IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v59y2017icp27-39.html
   My bibliography  Save this article

Dynamic transit accessibility and transit gap causality analysis

Author

Listed:
  • Fayyaz, S. Kiavash
  • Liu, Xiaoyue Cathy
  • Porter, Richard J.

Abstract

Public Transit Accessibility (PTA) analysis helps transit agencies and planners identify areas in need of transit service improvements and prioritize transit investments. To evaluate the accessibility of existing transit services and identify access gaps, it is critical to accurately estimate travel times between transit stops, which change throughout the day due to transit schedule variations. Commonly used methods in PTA ignore such temporal fluctuation. Moreover, these methods are unable to elucidate the causes of poor PTA. To address these issues, we first implemented an algorithm to effectively compute travel times at multiple departure times throughout the day in order to enable spatiotemporal PTA analysis. A series of indicators that are intuitive to interpret were developed to determine the varying causes of poor PTA and identify areas with immediate needs for improvements. We showcase the analytical framework using a transit network in the State of Utah operated by the Utah Transit Authority. The analysis is based solely on publicly-available open datasets, which makes it generally adaptable to other transit networks. Results can assist transit agencies with identifying areas in need of service improvement and prioritizing future investments.

Suggested Citation

  • Fayyaz, S. Kiavash & Liu, Xiaoyue Cathy & Porter, Richard J., 2017. "Dynamic transit accessibility and transit gap causality analysis," Journal of Transport Geography, Elsevier, vol. 59(C), pages 27-39.
  • Handle: RePEc:eee:jotrge:v:59:y:2017:i:c:p:27-39
    DOI: 10.1016/j.jtrangeo.2017.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692316304264
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2017.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cao, Jing & Liu, Xiaoyue Cathy & Wang, Yinhai & Li, Qingquan, 2013. "Accessibility impacts of China’s high-speed rail network," Journal of Transport Geography, Elsevier, vol. 28(C), pages 12-21.
    2. Mavoa, Suzanne & Witten, Karen & McCreanor, Tim & O’Sullivan, David, 2012. "GIS based destination accessibility via public transit and walking in Auckland, New Zealand," Journal of Transport Geography, Elsevier, vol. 20(1), pages 15-22.
    3. Fan, Yingling & Guthrie, Andrew E & Levinson, David M, 2012. "Impact of light rail implementation on labor market accessibility: A transportation equity perspective," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(3), pages 28-39.
    4. Wachs, Martin & Kumagai, T. Gordon, 1973. "Physical accessibility as a social indicator," Socio-Economic Planning Sciences, Elsevier, vol. 7(5), pages 437-456, October.
    5. Farber, Steven & Páez, Antonio, 2011. "Running to stay in place: the time-use implications of automobile oriented land-use and travel," Journal of Transport Geography, Elsevier, vol. 19(4), pages 782-793.
    6. Owen, Andrew & Levinson, David M., 2015. "Modeling the commute mode share of transit using continuous accessibility to jobs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 110-122.
    7. Foth, Nicole & Manaugh, Kevin & El-Geneidy, Ahmed M., 2013. "Towards equitable transit: examining transit accessibility and social need in Toronto, Canada, 1996–2006," Journal of Transport Geography, Elsevier, vol. 29(C), pages 1-10.
    8. Widener, Michael J. & Farber, Steven & Neutens, Tijs & Horner, Mark, 2015. "Spatiotemporal accessibility to supermarkets using public transit: an interaction potential approach in Cincinnati, Ohio," Journal of Transport Geography, Elsevier, vol. 42(C), pages 72-83.
    9. Fransen, Koos & Neutens, Tijs & Farber, Steven & De Maeyer, Philippe & Deruyter, Greet & Witlox, Frank, 2015. "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography, Elsevier, vol. 48(C), pages 176-187.
    10. Wu, Belinda M. & Hine, Julian P., 2003. "A PTAL approach to measuring changes in bus service accessibility," Transport Policy, Elsevier, vol. 10(4), pages 307-320, October.
    11. El-Geneidy, Ahmed & Levinson, David & Diab, Ehab & Boisjoly, Genevieve & Verbich, David & Loong, Charis, 2016. "The cost of equity: Assessing transit accessibility and social disparity using total travel cost," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 302-316.
    12. Mizuki Kawabata & Qing Shen, 2006. "Job Accessibility as an Indicator of Auto-Oriented Urban Structure: A Comparison of Boston and Los Angeles with Tokyo," Environment and Planning B, , vol. 33(1), pages 115-130, February.
    13. R W Vickerman, 1974. "Accessibility, Attraction, and Potential: A Review of Some Concepts and Their Use in Determining Mobility," Environment and Planning A, , vol. 6(6), pages 675-691, December.
    14. Moniruzzaman, Md & Páez, Antonio, 2012. "Accessibility to transit, by transit, and mode share: application of a logistic model with spatial filters," Journal of Transport Geography, Elsevier, vol. 24(C), pages 198-205.
    15. Mizuki Kawabata, 2009. "Spatiotemporal Dimensions of Modal Accessibility Disparity in Boston and San Francisco," Environment and Planning A, , vol. 41(1), pages 183-198, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Ying & Xu, Wangtu (Ato), 2021. "Spatial and temporal heterogeneity of the impact of high-speed railway on urban economy: Empirical study of Chinese cities," Journal of Transport Geography, Elsevier, vol. 91(C).
    2. Gao, Deng & Li, Shicheng, 2022. "Spatiotemporal impact of railway network in the Qinghai-Tibet Plateau on accessibility and economic linkages during 1984–2030," Journal of Transport Geography, Elsevier, vol. 100(C).
    3. Barajas, Jesus & Brown, Anne, 2020. "Not Minding the Gap: Does Ride-Hailing Serve Transit Deserts?," SocArXiv y4jwk, Center for Open Science.
    4. Ittamalla, Rajesh & Srinivas Kumar, Daruri Venkata, 2021. "Determinants of holistic passenger experience in public transportation: Scale development and validation," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    5. Karimpour, Abolfazl & Hosseinzadeh, Aryan & Kluger, Robert, 2023. "A data-driven approach to estimating dockless electric scooter service areas," Journal of Transport Geography, Elsevier, vol. 109(C).
    6. Zhangcai Yin & Zhanghaonan Jin & Shen Ying & Sanjuan Li & Qingquan Liu, 2020. "A spatial data model for urban spatial–temporal accessibility analysis," Journal of Geographical Systems, Springer, vol. 22(4), pages 447-468, October.
    7. Kelobonye, Keone & McCarney, Gary & Xia, Jianhong (Cecilia) & Swapan, Mohammad Shahidul Hasan & Mao, Feng & Zhou, Heng, 2019. "Relative accessibility analysis for key land uses: A spatial equity perspective," Journal of Transport Geography, Elsevier, vol. 75(C), pages 82-93.
    8. Arbex, Renato & Cunha, Claudio B., 2020. "Estimating the influence of crowding and travel time variability on accessibility to jobs in a large public transport network using smart card big data," Journal of Transport Geography, Elsevier, vol. 85(C).
    9. Cheng, Shaowu & Xie, Bing & Bie, Yiming & Zhang, Yaping & Zhang, Shen, 2018. "Measure dynamic individual spatial-temporal accessibility by public transit: Integrating time-table and passenger departure time," Journal of Transport Geography, Elsevier, vol. 66(C), pages 235-247.
    10. Wei, Ran & Liu, Xiaoyue & Mu, Yongjian & Wang, Liming & Golub, Aaron & Farber, Steven, 2017. "Evaluating public transit services for operational efficiency and access equity," Journal of Transport Geography, Elsevier, vol. 65(C), pages 70-79.
    11. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    12. Kim, Junghwan & Lee, Bumsoo, 2019. "More than travel time: New accessibility index capturing the connectivity of transit services," Journal of Transport Geography, Elsevier, vol. 78(C), pages 8-18.
    13. Jairo Ortega & János Tóth & Tamás Péter, 2021. "A Comprehensive Model to Study the Dynamic Accessibility of the Park & Ride System," Sustainability, MDPI, vol. 13(7), pages 1-17, April.
    14. Weckström, Christoffer & Kujala, Rainer & Mladenović, Miloš N. & Saramäki, Jari, 2019. "Assessment of large-scale transitions in public transport networks using open timetable data: case of Helsinki metro extension," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    15. Luis A. Guzman & Daniel Oviedo & Rafael Cardona, 2018. "Accessibility Changes: Analysis of the Integrated Public Transport System of Bogotá," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    16. Stępniak, Marcin & Pritchard, John P. & Geurs, Karst T. & Goliszek, Sławomir, 2019. "The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland," Journal of Transport Geography, Elsevier, vol. 75(C), pages 8-24.
    17. Sharma, Gajanand & Patil, Gopal R., 2024. "Urban spatial structure and equity for urban services through the lens of accessibility," Transport Policy, Elsevier, vol. 146(C), pages 72-90.
    18. Meijie Chen & Yumin Chen & Xiaoguang Wang & Huangyuan Tan & Fenglan Luo, 2019. "Spatial Difference of Transit-Based Accessibility to Hospitals by Regions Using Spatially Adjusted ANOVA," IJERPH, MDPI, vol. 16(11), pages 1-20, May.
    19. Handley, John C. & Fu, Lina & Tupper, Laura L., 2019. "A case study in spatial-temporal accessibility for a transit system," Journal of Transport Geography, Elsevier, vol. 75(C), pages 25-36.
    20. Barajas, Jesus M. & Brown, Anne, 2021. "Not minding the gap: Does ride-hailing serve transit deserts?," Journal of Transport Geography, Elsevier, vol. 90(C).
    21. Sharma, Gajanand & Patil, Gopal R., 2021. "Public transit accessibility approach to understand the equity for public healthcare services: A case study of Greater Mumbai," Journal of Transport Geography, Elsevier, vol. 94(C).
    22. Shixiong Jiang & Wei Guan & Liu Yang & Wenyi Zhang, 2020. "Feeder Bus Accessibility Modeling and Evaluation," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    23. Kim, Hyun & Lee, Keumsook & Park, Jong Soo & Song, Yena, 2018. "Transit network expansion and accessibility implications: A case study of Gwangju metropolitan area, South Korea," Research in Transportation Economics, Elsevier, vol. 69(C), pages 544-553.
    24. N. Nima Haghighi & Xiaoyue Cathy Liu & Ran Wei & Wenwen Li & Hu Shao, 2018. "Using Twitter data for transit performance assessment: a framework for evaluating transit riders’ opinions about quality of service," Public Transport, Springer, vol. 10(2), pages 363-377, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Wangtu (Ato) & Li, Yongling & Wang, Hui, 2016. "Transit accessibility for commuters considering the demand elasticities of distance and transfer," Journal of Transport Geography, Elsevier, vol. 56(C), pages 138-156.
    2. Boisjoly, Geneviève & El-Geneidy, Ahmed, 2016. "Daily fluctuations in transit and job availability: A comparative assessment of time-sensitive accessibility measures," Journal of Transport Geography, Elsevier, vol. 52(C), pages 73-81.
    3. Weckström, Christoffer & Kujala, Rainer & Mladenović, Miloš N. & Saramäki, Jari, 2019. "Assessment of large-scale transitions in public transport networks using open timetable data: case of Helsinki metro extension," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    4. Goliszek Sławomir, 2022. "The potential accessibility to workplaces and working-age population by means of public and private car transport in Szczecin," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(1), pages 31-41, January.
    5. Karner, Alex, 2018. "Assessing public transit service equity using route-level accessibility measures and public data," Journal of Transport Geography, Elsevier, vol. 67(C), pages 24-32.
    6. Merlin, Louis A. & Hu, Lingqian, 2017. "Does competition matter in measures of job accessibility? Explaining employment in Los Angeles," Journal of Transport Geography, Elsevier, vol. 64(C), pages 77-88.
    7. Ben-Elia, Eran & Benenson, Itzhak, 2019. "A spatially-explicit method for analyzing the equity of transit commuters' accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 31-42.
    8. Mengying Cui & David Levinson, 2020. "Primal and Dual Access," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    9. Boisjoly, Geneviève & El-Geneidy, Ahmed M., 2017. "How to get there? A critical assessment of accessibility objectives and indicators in metropolitan transportation plans," Transport Policy, Elsevier, vol. 55(C), pages 38-50.
    10. David Levinson & Hao Wu, 2020. "Towards a general theory of access," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    11. Sławomir Goliszek, 2021. "GIS tools and programming languages for creating models of public and private transport potential accessibility in Szczecin, Poland," Journal of Geographical Systems, Springer, vol. 23(1), pages 115-137, January.
    12. Nick Chaloux & Genevieve Boisjoly & Emily Grise & Ahmed El-Geneidy & David Levinson, 2019. "Chaloux, Nick, Boisjoly, Genevieve, Grise, Emily, El-Geneidy, Ahmed, and Levinson, D. (2019) I only get some satisfaction: Introducing satisfaction into measures of accessibility," Working Papers 2019-07, University of Minnesota: Nexus Research Group.
    13. Allen, Jeff & Farber, Steven, 2020. "Planning transport for social inclusion: An accessibility-activity participation approach," SocArXiv ap7wh, Center for Open Science.
    14. Saghapour, Tayebeh & Moridpour, Sara & Thompson, Russell G., 2016. "Public transport accessibility in metropolitan areas: A new approach incorporating population density," Journal of Transport Geography, Elsevier, vol. 54(C), pages 273-285.
    15. Sharma, Ishant & Mishra, Sabyasachee & Golias, Mihalis M. & Welch, Timothy F. & Cherry, Christopher R., 2020. "Equity of transit connectivity in Tennessee cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    16. Kelobonye, Keone & Zhou, Heng & McCarney, Gary & Xia, Jianhong (Cecilia), 2020. "Measuring the accessibility and spatial equity of urban services under competition using the cumulative opportunities measure," Journal of Transport Geography, Elsevier, vol. 85(C).
    17. Allen, Jeff & Farber, Steven, 2019. "Sizing up transport poverty: A national scale accounting of low-income households suffering from inaccessibility in Canada, and what to do about it," SocArXiv ua2gj, Center for Open Science.
    18. Wessel, Nate & Farber, Steven, 2018. "On the Accuracy of Schedule-Based GTFS for Measuring Accessibility," SocArXiv hzgpd, Center for Open Science.
    19. Mengying Cui & David Levinson, 2020. "Multi-Activity Access: How Activity Choice Affects Opportunity," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    20. Stępniak, Marcin & Pritchard, John P. & Geurs, Karst T. & Goliszek, Sławomir, 2019. "The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland," Journal of Transport Geography, Elsevier, vol. 75(C), pages 8-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:59:y:2017:i:c:p:27-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.