IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v186y2024ics0965856424001988.html
   My bibliography  Save this article

TOD typology and station area vibrancy: An interpretable machine learning approach

Author

Listed:
  • Pan, Huijun
  • Huang, Yu

Abstract

Transit-oriented development (TOD) has great potential to foster vibrant communities through improved access to activities around station areas. Several studies have investigated station area vibrancy and associations with TOD built environment (BE). However, few have considered the nonlinear impacts and varying relationships across station types. Taking Nanjing, China as a case study, we aim to 1) identify types of metro station areas (MSAs) with a “node-place-functionality” model and 2) unravel the nonlinear BE-vibrancy relationships and variations across MSA types. We find that five types best characterize the TOD built environment and present different levels of vibrancy indicated by the Baidu Heat Index. The GBDT (gradient boosting decision tree) models reveal transit accessibility, intersection density and commercial service density as the top three predictors of daytime and nighttime vibrancy, all presenting nonlinear and threshold effects. We also find the predicting power of BE features differs significantly across MSA types. The nuanced analyses provide context-specific planning guidance.

Suggested Citation

  • Pan, Huijun & Huang, Yu, 2024. "TOD typology and station area vibrancy: An interpretable machine learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:transa:v:186:y:2024:i:c:s0965856424001988
    DOI: 10.1016/j.tra.2024.104150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424001988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liao, Cong & Scheuer, Bronte, 2022. "Evaluating the performance of transit-oriented development in Beijing metro station areas: Integrating morphology and demand into the node-place model," Journal of Transport Geography, Elsevier, vol. 100(C).
    2. Huang, Yu & Parker, Dawn & Minaker, Leia, 2021. "Identifying latent demand for transit-oriented development neighbourhoods: Evidence from a mid-sized urban area in Canada," Journal of Transport Geography, Elsevier, vol. 90(C).
    3. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2019. "Network criticality and the node-place-design model: Classifying metro station areas in Greater London," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    4. Chang Xia & Anqi Zhang & Anthony G. O. Yeh, 2022. "The Varying Relationships between Multidimensional Urban Form and Urban Vitality in Chinese Megacities: Insights from a Comparative Analysis," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 112(1), pages 141-166, January.
    5. Duncan, Michael, 2019. "Would the replacement of park-and-ride facilities with transit-oriented development reduce vehicle kilometers traveled in an auto-oriented US region?," Transport Policy, Elsevier, vol. 81(C), pages 293-301.
    6. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    7. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    8. Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
    9. Bo Huang & Yulun Zhou & Zhigang Li & Yimeng Song & Jixuan Cai & Wei Tu, 2020. "Evaluating and characterizing urban vibrancy using spatial big data: Shanghai as a case study," Environment and Planning B, , vol. 47(9), pages 1543-1559, November.
    10. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    11. Jiangping Zhou & Yuling Yang & Chris Webster, 2020. "Using Big and Open Data to Analyze Transit-Oriented Development," Journal of the American Planning Association, Taylor & Francis Journals, vol. 86(3), pages 364-376, July.
    12. Ren Thomas & Dorina Pojani & Sander Lenferink & Luca Bertolini & Dominic Stead & Erwin van der Krabben, 2018. "Is transit-oriented development (TOD) an internationally transferable policy concept?," Regional Studies, Taylor & Francis Journals, vol. 52(9), pages 1201-1213, September.
    13. Liu, Yudi & Nath, Nabamita & Murayama, Akito & Manabe, Rikutaro, 2022. "Transit-oriented development with urban sprawl? Four phases of urban growth and policy intervention in Tokyo," Land Use Policy, Elsevier, vol. 112(C).
    14. Jin, Tanhua & Cheng, Long & Liu, Zhicheng & Cao, Jun & Huang, Haosheng & Witlox, Frank, 2022. "Nonlinear public transit accessibility effects on housing prices: Heterogeneity across price segments," Transport Policy, Elsevier, vol. 117(C), pages 48-59.
    15. Lyu, Guowei & Bertolini, Luca & Pfeffer, Karin, 2016. "Developing a TOD typology for Beijing metro station areas," Journal of Transport Geography, Elsevier, vol. 55(C), pages 40-50.
    16. Dea van Lierop & Kees Maat & Ahmed El-Geneidy, 2017. "Talking TOD: learning about transit-oriented development in the United States, Canada, and the Netherlands," Journal of Urbanism: International Research on Placemaking and Urban Sustainability, Taylor & Francis Journals, vol. 10(1), pages 49-62, January.
    17. Chorus, Paul & Bertolini, Luca, 2011. "An application of the node-place model to explore the spatial development dynamics of station areas in Tokyo," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 4(1), pages 45-58.
    18. Higgins, Christopher D. & Kanaroglou, Pavlos S., 2016. "A latent class method for classifying and evaluating the performance of station area transit-oriented development in the Toronto region," Journal of Transport Geography, Elsevier, vol. 52(C), pages 61-72.
    19. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    20. Zhaohong Sun & Andrew Allan & Xin Zou & Derek Scrafton, 2022. "Scientometric Analysis and Mapping of Transit-Oriented Development Studies," Planning Practice & Research, Taylor & Francis Journals, vol. 37(1), pages 35-60, January.
    21. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    22. Pezeshknejad, Parsa & Monajem, Saeed & Mozafari, Hamid, 2020. "Evaluating sustainability and land use integration of BRT stations via extended node place model, an application on BRT stations of Tehran," Journal of Transport Geography, Elsevier, vol. 82(C).
    23. Singh, Yamini Jain & Lukman, Azhari & Flacke, Johannes & Zuidgeest, Mark & Van Maarseveen, M.F.A.M., 2017. "Measuring TOD around transit nodes - Towards TOD policy," Transport Policy, Elsevier, vol. 56(C), pages 96-111.
    24. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2014. "Advance transit oriented development typology: case study in Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 34(C), pages 54-70.
    25. Shao, Qifan & Zhang, Wenjia & Cao, Xinyu & Yang, Jiawen & Yin, Jie, 2020. "Threshold and moderating effects of land use on metro ridership in Shenzhen: Implications for TOD planning," Journal of Transport Geography, Elsevier, vol. 89(C).
    26. Hiroaki Suzuki & Robert Cervero & Kanako Iuchi, 2013. "Transforming Cities with Transit : Transit and Land-Use Integration for Sustainable Urban Development [Transformando las ciudades con el transporte público : integración del transporte público y el," World Bank Publications - Books, The World Bank Group, number 12233.
    27. Morey, Edward & Thiene, Mara & De Salvo, Maria & Signorello, Giovanni, 2008. "Using attitudinal data to identify latent classes that vary in their preference for landscape preservation," Ecological Economics, Elsevier, vol. 68(1-2), pages 536-546, December.
    28. Yang, Jiawen & Cao, Jason & Zhou, Yufei, 2021. "Elaborating non-linear associations and synergies of subway access and land uses with urban vitality in Shenzhen," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 74-88.
    29. Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robillard, Arianne & Boisjoly, Geneviève & van Lierop, Dea, 2024. "Transit-oriented development and bikeability: Classifying public transport station areas in Montreal, Canada," Transport Policy, Elsevier, vol. 148(C), pages 79-91.
    2. Liao, Cong & Scheuer, Bronte, 2022. "Evaluating the performance of transit-oriented development in Beijing metro station areas: Integrating morphology and demand into the node-place model," Journal of Transport Geography, Elsevier, vol. 100(C).
    3. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    4. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    5. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    6. Zhao, Yingrui & Hu, Songhua & Zhang, Ming, 2024. "Evaluating equitable Transit-Oriented development (TOD) via the Node-Place-People model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    7. Ying Liang & Wei Song & Xiaofeng Dong, 2021. "Evaluating the Space Use of Large Railway Hub Station Areas in Beijing toward Integrated Station-City Development," Land, MDPI, vol. 10(11), pages 1-22, November.
    8. Liu, Yunzhe & Singleton, Alex & Arribas-Bel, Daniel, 2020. "Considering context and dynamics: A classification of transit-orientated development for New York City," Journal of Transport Geography, Elsevier, vol. 85(C).
    9. Zhou, Mingzhi & Zhou, Jiali & Zhou, Jiangping & Lei, Shuyu & Zhao, Zhan, 2023. "Introducing social contacts into the node-place model: A case study of Hong Kong," Journal of Transport Geography, Elsevier, vol. 107(C).
    10. Moyano, Amparo & Solís, Eloy & Díaz-Burgos, Elena & Rodrigo, Alejandro & Coronado, José M., 2023. "Typologies of stations’ catchment areas in metropolitan urban peripheries: From car-oriented to sustainable urban strategies," Land Use Policy, Elsevier, vol. 134(C).
    11. Nigro, Antonio & Bertolini, Luca & Moccia, Francesco Domenico, 2019. "Land use and public transport integration in small cities and towns: Assessment methodology and application," Journal of Transport Geography, Elsevier, vol. 74(C), pages 110-124.
    12. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    13. Zheng, Lingwei & Austwick, Martin Zaltz, 2023. "Classifying station areas in greater Manchester using the node-place-design model: A comparative analysis with system centrality and green space coverage," Journal of Transport Geography, Elsevier, vol. 112(C).
    14. Choi, Yunkyung & Guhathakurta, Subhrajit, 2024. "Unraveling the diversity in transit-oriented development," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    15. Rao, Fujie & Pafka, Elek, 2021. "Shopping morphologies of urban transit station areas: A comparative study of central city station catchments in Toronto, San Francisco, and Melbourne," Journal of Transport Geography, Elsevier, vol. 96(C).
    16. Yingqun Zhang & Rui Song & Rob van Nes & Shiwei He & Weichuan Yin, 2019. "Identifying Urban Structure Based on Transit-Oriented Development," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    17. Shin, Yonggeun & Kim, Dong-Kyu & Kim, Eui-Jin, 2022. "Activity-based TOD typology for seoul transit station areas using smart-card data," Journal of Transport Geography, Elsevier, vol. 105(C).
    18. Qiaoling Fang & Tomo Inoue & Dongqi Li & Qiang Liu & Jian Ma, 2023. "Transit-Oriented Development and Sustainable Cities: A Visual Analysis of the Literature Based on CiteSpace and VOSviewer," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    19. Jeffrey, Dana & Boulangé, Claire & Giles-Corti, Billie & Washington, Simon & Gunn, Lucy, 2019. "Using walkability measures to identify train stations with the potential to become transit oriented developments located in walkable neighbourhoods," Journal of Transport Geography, Elsevier, vol. 76(C), pages 221-231.
    20. Pezeshknejad, Parsa & Monajem, Saeed & Mozafari, Hamid, 2020. "Evaluating sustainability and land use integration of BRT stations via extended node place model, an application on BRT stations of Tehran," Journal of Transport Geography, Elsevier, vol. 82(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:186:y:2024:i:c:s0965856424001988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.