IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v57y2006i9d10.1057_palgrave.jors.2602085.html
   My bibliography  Save this article

Scheduling preventive railway maintenance activities

Author

Listed:
  • G Budai

    (Erasmus University Rotterdam)

  • D Huisman

    (Erasmus University Rotterdam)

  • R Dekker

    (Erasmus University Rotterdam)

Abstract

A railway system needs a substantial amount of maintenance. To prevent unexpected breakdowns as much as possible, preventive maintenance is required. In this paper we discuss the preventive maintenance scheduling problem (PMSP), where (short) routine activities and (long) unique projects have to be scheduled in a certain period. To reduce costs and inconvenience for the travellers and operators, these activities should be scheduled together as much as possible. We present two versions of the PMSP, one with fixed intervals between two consecutive executions of the same routine work, and one with only a maximum interval. Apart from giving a math programming formulation for the PMSP and for its extension we also present some heuristics. In addition, we compare the performance of these heuristics with the optimal solution using some randomly generated instances.

Suggested Citation

  • G Budai & D Huisman & R Dekker, 2006. "Scheduling preventive railway maintenance activities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1035-1044, September.
  • Handle: RePEc:pal:jorsoc:v:57:y:2006:i:9:d:10.1057_palgrave.jors.2602085
    DOI: 10.1057/palgrave.jors.2602085
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602085
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rommert Dekker & Ralph Wildeman & Frank Duyn Schouten, 1997. "A review of multi-component maintenance models with economic dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(3), pages 411-435, October.
    2. Wildeman, R. E. & Dekker, R. & Smit, A. C. J. M., 1997. "A dynamic policy for grouping maintenance activities," European Journal of Operational Research, Elsevier, vol. 99(3), pages 530-551, June.
    3. Kralj, Branimir L. & Petrovic, Radivoj, 1988. "Optimal preventive maintenance scheduling of thermal generating units in power systems --A survey of problem formulations and solution methods," European Journal of Operational Research, Elsevier, vol. 35(1), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayse Sena Eruguz & Tarkan Tan & Geert‐Jan van Houtum, 2017. "Optimizing usage and maintenance decisions for k‐out‐of‐n systems of moving assets," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 418-434, August.
    2. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.
    3. Markus Bohlin & Mathias Wärja, 2015. "Maintenance optimization with duration-dependent costs," Annals of Operations Research, Springer, vol. 224(1), pages 1-23, January.
    4. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hierarchical-clustering-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems," International Journal of Production Economics, Elsevier, vol. 264(C).
    5. Xia, Tangbin & Xi, Lifeng & Zhou, Xiaojun & Lee, Jay, 2012. "Dynamic maintenance decision-making for series–parallel manufacturing system based on MAM–MTW methodology," European Journal of Operational Research, Elsevier, vol. 221(1), pages 231-240.
    6. Das, K. & Lashkari, R.S. & Sengupta, S., 2007. "Machine reliability and preventive maintenance planning for cellular manufacturing systems," European Journal of Operational Research, Elsevier, vol. 183(1), pages 162-180, November.
    7. Bouvard, K. & Artus, S. & Bérenguer, C. & Cocquempot, V., 2011. "Condition-based dynamic maintenance operations planning & grouping. Application to commercial heavy vehicles," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 601-610.
    8. Grigoriev, Alexander & van de Klundert, Joris & Spieksma, Frits C.R., 2006. "Modeling and solving the periodic maintenance problem," European Journal of Operational Research, Elsevier, vol. 172(3), pages 783-797, August.
    9. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    10. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    11. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    12. Do Van, Phuc & Barros, Anne & Bérenguer, Christophe & Bouvard, Keomany & Brissaud, Florent, 2013. "Dynamic grouping maintenance with time limited opportunities," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 51-59.
    13. Xia, Tangbin & Jin, Xiaoning & Xi, Lifeng & Ni, Jun, 2015. "Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling," European Journal of Operational Research, Elsevier, vol. 240(3), pages 781-790.
    14. Liu, Gehui & Chen, Shaokuan & Jin, Hua & Liu, Shuang, 2021. "Optimum opportunistic maintenance schedule incorporating delay time theory with imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    15. Dao, Cuong D. & Zuo, Ming J. & Pandey, Mayank, 2014. "Selective maintenance for multi-state series–parallel systems under economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 240-249.
    16. Liu, Bin & Pandey, Mahesh D. & Wang, Xiaolin & Zhao, Xiujie, 2021. "A finite-horizon condition-based maintenance policy for a two-unit system with dependent degradation processes," European Journal of Operational Research, Elsevier, vol. 295(2), pages 705-717.
    17. Pascual, R. & Meruane, V. & Rey, P.A., 2008. "On the effect of downtime costs and budget constraint on preventive and replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 144-151.
    18. Scarf, Philip A. & Cavalcante, Cristiano A.V., 2010. "Hybrid block replacement and inspection policies for a multi-component system with heterogeneous component lives," European Journal of Operational Research, Elsevier, vol. 206(2), pages 384-394, October.
    19. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    20. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:57:y:2006:i:9:d:10.1057_palgrave.jors.2602085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.