IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v81y2018icp195-207.html
   My bibliography  Save this article

Computing gradient-based stepwise benchmarking paths

Author

Listed:
  • Lozano, Sebastián
  • Calzada-Infante, Laura

Abstract

In this paper, a new stepwise benchmarking approach is presented. It is based on the concept of efficiency field potential given by a continuous and differentiable function that decreases monotonously as the amount of inputs consumed is reduced and the amount of outputs produced is increased. A gradient-based stepwise efficiency improvement method is proposed and the graphical interpretation of the continuous gradient-based trajectories is shown. A minimum potential DEA model is also formulated. The proposed approach is units invariant and can take into account preference structure, non-discretionary variables and undesirable outputs. The proposed method has been applied to an organic farming dataset.

Suggested Citation

  • Lozano, Sebastián & Calzada-Infante, Laura, 2018. "Computing gradient-based stepwise benchmarking paths," Omega, Elsevier, vol. 81(C), pages 195-207.
  • Handle: RePEc:eee:jomega:v:81:y:2018:i:c:p:195-207
    DOI: 10.1016/j.omega.2017.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048317305455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2017.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jose Zofio & Jesus Pastor & Juan Aparicio, 2013. "The directional profit efficiency measure: on why profit inefficiency is either technical or allocative," Journal of Productivity Analysis, Springer, vol. 40(3), pages 257-266, December.
    2. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    3. Seiford, Lawrence M. & Zhu, Joe, 2003. "Context-dependent data envelopment analysis--Measuring attractiveness and progress," Omega, Elsevier, vol. 31(5), pages 397-408, October.
    4. Ebert, Udo & Welsch, Heinz, 2004. "Meaningful environmental indices: a social choice approach," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 270-283, March.
    5. M C A S Portela & E Thanassoulis, 2007. "Developing a decomposable measure of profit efficiency using DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 481-490, April.
    6. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    7. Soushi Suzuki & Peter Nijkamp, 2011. "A stepwise-projection data envelopment analysis for public transport operations in Japan," Letters in Spatial and Resource Sciences, Springer, vol. 4(2), pages 139-156, July.
    8. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    9. Jaehun Park & Si-Il Sung, 2016. "Integrated Approach to Construction of Benchmarking Network in DEA-Based Stepwise Benchmark Target Selection," Sustainability, MDPI, vol. 8(7), pages 1-15, June.
    10. Laurens Cherchye & Willem Moesen & Nicky Rogge & Tom Puyenbroeck, 2007. "An Introduction to ‘Benefit of the Doubt’ Composite Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 82(1), pages 111-145, May.
    11. Frances Frei & Patrick Harker, 1999. "Projections Onto Efficient Frontiers: Theoretical and Computational Extensions to DEA," Journal of Productivity Analysis, Springer, vol. 11(3), pages 275-300, June.
    12. Sharma, Mithun J. & Yu, Song Jin, 2010. "Benchmark optimization and attribute identification for improvement of container terminals," European Journal of Operational Research, Elsevier, vol. 201(2), pages 568-580, March.
    13. Fang, Lei, 2015. "Centralized resource allocation based on efficiency analysis for step-by-step improvement paths," Omega, Elsevier, vol. 51(C), pages 24-28.
    14. Aparicio, Juan & Mahlberg, Bernhard & Pastor, Jesus T. & Sahoo, Biresh K., 2014. "Decomposing technical inefficiency using the principle of least action," European Journal of Operational Research, Elsevier, vol. 239(3), pages 776-785.
    15. S Lozano & G Villa, 2005. "Determining a sequence of targets in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(12), pages 1439-1447, December.
    16. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    17. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    18. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, October.
    19. Ando, Kazutoshi & Minamide, Masato & Sekitani, Kazuyuki & Shi, Jianming, 2017. "Monotonicity of minimum distance inefficiency measures for Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 260(1), pages 232-243.
    20. Maital, Shlomo & Vaninsky, Alexander, 1999. "Data envelopment analysis with a single DMU: A graphic projected-gradient approach," European Journal of Operational Research, Elsevier, vol. 115(3), pages 518-528, June.
    21. Ghahraman, Abaghan & Prior, Diego, 2016. "A learning ladder toward efficiency: Proposing network-based stepwise benchmark selection," Omega, Elsevier, vol. 63(C), pages 83-93.
    22. Sebastián Lozano & Gabriel Villa, 2010. "Gradual technical and scale efficiency improvement in DEA," Annals of Operations Research, Springer, vol. 173(1), pages 123-136, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    2. Sebastián Lozano & Narges Soltani & Akram Dehnokhalaji, 2020. "A compromise programming approach for target setting in DEA," Annals of Operations Research, Springer, vol. 288(1), pages 363-390, May.
    3. Sebastián Lozano & Narges Soltani, 2020. "A modified discrete Raiffa approach for efficiency assessment and target setting," Annals of Operations Research, Springer, vol. 292(1), pages 71-95, September.
    4. An, Qingxian & Tao, Xiangyang & Xiong, Beibei, 2021. "Benchmarking with data envelopment analysis: An agency perspective," Omega, Elsevier, vol. 101(C).
    5. Sebastián Lozano & Narges Soltani, 2018. "DEA target setting using lexicographic and endogenous directional distance function approaches," Journal of Productivity Analysis, Springer, vol. 50(1), pages 55-70, October.
    6. Kadziński, Miłosz & Stamenković, Mladen & Uniejewski, Maciej, 2022. "Stepwise benchmarking for multiple criteria sorting," Omega, Elsevier, vol. 108(C).
    7. Lozano, Sebastián & Khezri, Somayeh, 2021. "Network DEA smallest improvement approach," Omega, Elsevier, vol. 98(C).
    8. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2020. "Cross-benchmarking for performance evaluation: Looking across best practices of different peer groups using DEA," Omega, Elsevier, vol. 92(C).
    9. An, Qingxian & Zhang, Qiaoyu & Tao, Xiangyang, 2023. "Pay-for-performance incentives in benchmarking with quasi S-shaped technology," Omega, Elsevier, vol. 118(C).
    10. Ji, Zhiyong & Wu, Xianhua & Chen, Xueli & Zhou, Wenzhuo & Song, Malin, 2023. "Finding green performance targets globally closest to management goals for ports experiencing similar circumstances," Resources Policy, Elsevier, vol. 85(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aparicio, Juan & Garcia-Nove, Eva M. & Kapelko, Magdalena & Pastor, Jesus T., 2017. "Graph productivity change measure using the least distance to the pareto-efficient frontier in data envelopment analysis," Omega, Elsevier, vol. 72(C), pages 1-14.
    2. Ruiz, José L. & Sirvent, Inmaculada, 2019. "Performance evaluation through DEA benchmarking adjusted to goals," Omega, Elsevier, vol. 87(C), pages 150-157.
    3. Juan Aparicio & Magdalena Kapelko & Juan F. Monge, 2020. "A Well-Defined Composite Indicator: An Application to Corporate Social Responsibility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 299-323, July.
    4. Aparicio, Juan & Cordero, Jose M. & Gonzalez, Martin & Lopez-Espin, Jose J., 2018. "Using non-radial DEA to assess school efficiency in a cross-country perspective: An empirical analysis of OECD countries," Omega, Elsevier, vol. 79(C), pages 9-20.
    5. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    6. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    7. Lozano, Sebastián & Khezri, Somayeh, 2021. "Network DEA smallest improvement approach," Omega, Elsevier, vol. 98(C).
    8. Kadziński, Miłosz & Stamenković, Mladen & Uniejewski, Maciej, 2022. "Stepwise benchmarking for multiple criteria sorting," Omega, Elsevier, vol. 108(C).
    9. Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
    10. Ando, Kazutoshi & Minamide, Masato & Sekitani, Kazuyuki & Shi, Jianming, 2017. "Monotonicity of minimum distance inefficiency measures for Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 260(1), pages 232-243.
    11. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2023. "Estimating the degree of firms’ input market power via data envelopment analysis: Evidence from the global biotechnology and pharmaceutical industry," European Journal of Operational Research, Elsevier, vol. 305(2), pages 946-960.
    12. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    13. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2022. "Bank production with nonperforming loans: A minimum distance directional slack inefficiency approach," Omega, Elsevier, vol. 113(C).
    14. Sekitani, Kazuyuki & Zhao, Yu, 2023. "Least-distance approach for efficiency analysis: A framework for nonlinear DEA models," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1296-1310.
    15. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    16. Bogetoft, Peter & Ramírez-Ayerbe, Jasone & Romero Morales, Dolores, 2024. "Counterfactual analysis and target setting in benchmarking," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1083-1095.
    17. Fangqing Wei & Yanan Fu & Feng Yang & Chun Sun & Sheng Ang, 2023. "Closest target setting with minimum improvement costs considering demand and resource mismatches," Operational Research, Springer, vol. 23(3), pages 1-29, September.
    18. Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).
    19. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2020. "Cross-benchmarking for performance evaluation: Looking across best practices of different peer groups using DEA," Omega, Elsevier, vol. 92(C).
    20. Juan Aparicio & Jesus T. Pastor & Jose L. Sainz-Pardo & Fernando Vidal, 2020. "Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis," Operational Research, Springer, vol. 20(2), pages 747-770, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:81:y:2018:i:c:p:195-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.