IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v95y2024ics0038012124002192.html
   My bibliography  Save this article

Planning improvements through data envelopment analysis (DEA) benchmarking based on a selection of peers

Author

Listed:
  • Borrás, Fernando
  • Ruiz, José L.
  • Sirvent, Inmaculada

Abstract

Incorporating preferences on suitable peers into benchmarking analyses may ensure the setting of appropriate targets, which enable designing plans for improving performance that are aligned with management. This paper deals with target setting in situations where decision makers (DMs) have previously made a selection of peer candidates for the benchmarking of a given organization. A first approach is developed within the framework of conventional Data Envelopment Analysis (DEA), which is the technology mostly used in non-parametric frontier analysis. It provides targets from reference sets consisting of peer candidates that span a face of the strong efficient frontier of the production possibility set (PPS). These targets result from solving a DEA-like model, thus preventing from the need to identify all of the maximal efficient faces (MEFs) of the DEA frontier. We also propose a second approach where the convexity in DEA is somehow relaxed to allow additionally for reference sets consisting of candidates that are Pareto-efficient, provided that their convex hull is not dominated by other units. In that sense, the targets found can be seen as representing best practices. This approach broadens the range of alternatives when planning improvements, and may eventually provide closer targets.

Suggested Citation

  • Borrás, Fernando & Ruiz, José L. & Sirvent, Inmaculada, 2024. "Planning improvements through data envelopment analysis (DEA) benchmarking based on a selection of peers," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
  • Handle: RePEc:eee:soceps:v:95:y:2024:i:c:s0038012124002192
    DOI: 10.1016/j.seps.2024.102020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012124002192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2024.102020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarja Joro & Pekka Korhonen & Jyrki Wallenius, 1998. "Structural Comparison of Data Envelopment Analysis and Multiple Objective Linear Programming," Management Science, INFORMS, vol. 44(7), pages 962-970, July.
    2. Niels Christian Petersen, 1990. "Data Envelopment Analysis on a Relaxed Set of Assumptions," Management Science, INFORMS, vol. 36(3), pages 305-314, March.
    3. Kuosmanen, Timo, 2001. "DEA with efficiency classification preserving conditional convexity," European Journal of Operational Research, Elsevier, vol. 132(2), pages 326-342, July.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
    6. Podinovski, V. V., 2005. "Selective convexity in DEA models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 552-563, March.
    7. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    8. Fukuyama, Hirofumi & Sekitani, Kazuyuki, 2012. "Decomposing the efficient frontier of the DEA production possibility set into a smallest number of convex polyhedrons by mixed integer programming," European Journal of Operational Research, Elsevier, vol. 221(1), pages 165-174.
    9. Lozano, Sebastián & Calzada-Infante, Laura, 2018. "Computing gradient-based stepwise benchmarking paths," Omega, Elsevier, vol. 81(C), pages 195-207.
    10. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    11. José L. Ruiz & Inmaculada Sirvent, 2021. "Searching for alternatives to the closest targets: Identifying new directions for improvement while controlling additional efforts," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(12), pages 2770-2782, December.
    12. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2020. "Cross-benchmarking for performance evaluation: Looking across best practices of different peer groups using DEA," Omega, Elsevier, vol. 92(C).
    13. W. Briec & K. Kerstens, 2009. "Infeasibility and Directional Distance Functions with Application to the Determinateness of the Luenberger Productivity Indicator," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 55-73, April.
    14. Sheng Ang & Rui Zheng & Fangqing Wei & Feng Yang, 2021. "A modified DEA-based approach for selecting preferred benchmarks in social networks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(2), pages 342-353, February.
    15. Stewart, Theodor J., 2010. "Goal directed benchmarking for organizational efficiency," Omega, Elsevier, vol. 38(6), pages 534-539, December.
    16. Lobo, Maria Stella de Castro & Estellita Lins, Marcos Pereira & Rodrigues, Henrique de Castro & Soares, Gabriel Martins, 2022. "Planning feasible and efficient operational scenarios for a university hospital through multimethodology," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    17. Xiangyang Tao & Qingxian An & Beibei Xiong & Sijia Cai, 2023. "Sequential benchmark selection on Pareto-efficient frontiers with endogenous directions," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(1), pages 18-32, January.
    18. Merja Halme & Tarja Joro & Pekka Korhonen & Seppo Salo & Jyrki Wallenius, 1999. "A Value Efficiency Approach to Incorporating Preference Information in Data Envelopment Analysis," Management Science, INFORMS, vol. 45(1), pages 103-115, January.
    19. Brockett, P. L. & Charnes, A. & Cooper, W. W. & Huang, Z. M. & Sun, D. B., 1997. "Data transformations in DEA cone ratio envelopment approaches for monitoring bank performances," European Journal of Operational Research, Elsevier, vol. 98(2), pages 250-268, April.
    20. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    21. Mehdiloozad, Mahmood & Podinovski, Victor V., 2018. "Nonparametric production technologies with weakly disposable inputs," European Journal of Operational Research, Elsevier, vol. 266(1), pages 247-258.
    22. Sebastián Lozano & Narges Soltani, 2020. "A modified discrete Raiffa approach for efficiency assessment and target setting," Annals of Operations Research, Springer, vol. 292(1), pages 71-95, September.
    23. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    24. Henriques, C.O. & Chavez, J.M. & Gouveia, M.C. & Marcenaro-Gutierrez, O.D., 2022. "Efficiency of secondary schools in Ecuador: A value based DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    25. Olesen, Ole B. & Ruggiero, John, 2014. "Maintaining the Regular Ultra Passum Law in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 235(3), pages 798-809.
    26. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    27. Cook, Wade D. & Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada & Zhu, Joe, 2019. "DEA-based benchmarking for performance evaluation in pay-for-performance incentive plans," Omega, Elsevier, vol. 84(C), pages 45-54.
    28. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2022. "Bank production with nonperforming loans: A minimum distance directional slack inefficiency approach," Omega, Elsevier, vol. 113(C).
    29. Ruiz, José L. & Sirvent, Inmaculada, 2019. "Performance evaluation through DEA benchmarking adjusted to goals," Omega, Elsevier, vol. 87(C), pages 150-157.
    30. Hirofumi Fukuyama & Roman Matousek & Nickolaos G. Tzeremes, 2022. "Minimum distance efficiency measure in bank production: A directional slack inefficiency approach," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1742-1754, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    2. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2020. "Cross-benchmarking for performance evaluation: Looking across best practices of different peer groups using DEA," Omega, Elsevier, vol. 92(C).
    3. An, Qingxian & Zhang, Qiaoyu & Tao, Xiangyang, 2023. "Pay-for-performance incentives in benchmarking with quasi S-shaped technology," Omega, Elsevier, vol. 118(C).
    4. An, Qingxian & Tao, Xiangyang & Xiong, Beibei, 2021. "Benchmarking with data envelopment analysis: An agency perspective," Omega, Elsevier, vol. 101(C).
    5. Mehdiloozad, Mahmood & Podinovski, Victor V., 2018. "Nonparametric production technologies with weakly disposable inputs," European Journal of Operational Research, Elsevier, vol. 266(1), pages 247-258.
    6. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    7. Ji, Zhiyong & Wu, Xianhua & Chen, Xueli & Zhou, Wenzhuo & Song, Malin, 2023. "Finding green performance targets globally closest to management goals for ports experiencing similar circumstances," Resources Policy, Elsevier, vol. 85(PB).
    8. Ruiz, José L. & Sirvent, Inmaculada, 2019. "Performance evaluation through DEA benchmarking adjusted to goals," Omega, Elsevier, vol. 87(C), pages 150-157.
    9. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    10. Amineh Ghazi & Farhad Hosseinzadeh Lotfı & Masoud Sanei, 2022. "Finding the strong efficient frontier and strong defining hyperplanes of production possibility set using multiple objective linear programming," Operational Research, Springer, vol. 22(1), pages 165-198, March.
    11. Chatzistamoulou, Nikos & Kounetas, Kostas & Tsekouras, Kostas, 2024. "Knowledge flows in Data Envelopment Analysis. The role of peer effects," Omega, Elsevier, vol. 129(C).
    12. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    13. Ruiz, José L. & Segura, José V. & Sirvent, Inmaculada, 2015. "Benchmarking and target setting with expert preferences: An application to the evaluation of educational performance of Spanish universities," European Journal of Operational Research, Elsevier, vol. 242(2), pages 594-605.
    14. Panagiotis Ravanos & Giannis Karagiannis, 2022. "In search for the most preferred solution in value efficiency analysis," Journal of Productivity Analysis, Springer, vol. 58(2), pages 203-220, December.
    15. Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
    16. Giannis Karagiannis & Panagiotis Ravanos, 2023. "On Value Efficiency Analysis and Cone-Ratio Data Envelopment Analysis models," Discussion Paper Series 2023_03, Department of Economics, University of Macedonia, revised Mar 2023.
    17. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    18. Podinovski, V. V., 2005. "Selective convexity in DEA models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 552-563, March.
    19. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    20. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:95:y:2024:i:c:s0038012124002192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.