IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v53y2015icp1-10.html
   My bibliography  Save this article

Stochastic lot sizing problem with controllable processing times

Author

Listed:
  • Koca, Esra
  • Yaman, Hande
  • Selim Aktürk, M.

Abstract

In this study, we consider the stochastic capacitated lot sizing problem with controllable processing times where processing times can be reduced in return for extra compression cost. We assume that the compression cost function is a convex function as it may reflect increasing marginal costs of larger reductions and may be more appropriate when the resource life, energy consumption or carbon emission are taken into consideration. We consider this problem under static uncertainty strategy and α service level constraints. We first introduce a nonlinear mixed integer programming formulation of the problem, and use the recent advances in second order cone programming to strengthen it and then solve by a commercial solver. Our computational experiments show that taking the processing times as constant may lead to more costly production plans, and the value of controllable processing times becomes more evident for a stochastic environment with a limited capacity. Moreover, we observe that controllable processing times increase the solution flexibility and provide a better solution in most of the problem instances, although the largest improvements are obtained when setup costs are high and the system has medium sized capacities.

Suggested Citation

  • Koca, Esra & Yaman, Hande & Selim Aktürk, M., 2015. "Stochastic lot sizing problem with controllable processing times," Omega, Elsevier, vol. 53(C), pages 1-10.
  • Handle: RePEc:eee:jomega:v:53:y:2015:i:c:p:1-10
    DOI: 10.1016/j.omega.2014.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030504831400142X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2014.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, Powell & Narayanan, Arunachalam & Sahin, Funda, 2009. "Coordinated deterministic dynamic demand lot-sizing problem: A review of models and algorithms," Omega, Elsevier, vol. 37(1), pages 3-15, February.
    2. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    3. Jeang, Angus, 2012. "Simultaneous determination of production lot size and process parameters under process deterioration and process breakdown," Omega, Elsevier, vol. 40(6), pages 774-781.
    4. James H. Bookbinder & Jin-Yan Tan, 1988. "Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints," Management Science, INFORMS, vol. 34(9), pages 1096-1108, September.
    5. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    6. Helber, Stefan & Sahling, Florian & Schimmelpfeng, Katja, 2011. "Dynamic capacitated lot sizing with random demand and dynamic safety stocks," Hannover Economic Papers (HEP) dp-465, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    7. Vargas, Vicente, 2009. "An optimal solution for the stochastic version of the Wagner-Whitin dynamic lot-size model," European Journal of Operational Research, Elsevier, vol. 198(2), pages 447-451, October.
    8. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2003. "A Comparison of Mixed-Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems," Management Science, INFORMS, vol. 49(9), pages 1268-1273, September.
    9. Chen, Frank Y. & Krass, Dmitry, 2001. "Inventory models with minimal service level constraints," European Journal of Operational Research, Elsevier, vol. 134(1), pages 120-140, October.
    10. Alper Atamtürk & Dorit S. Hochbaum, 2001. "Capacity Acquisition, Subcontracting, and Lot Sizing," Management Science, INFORMS, vol. 47(8), pages 1081-1100, August.
    11. Yan, Changyuan & Liao, Yi & Banerjee, Avijit, 2013. "Multi-product lot scheduling with backordering and shelf-life constraints," Omega, Elsevier, vol. 41(3), pages 510-516.
    12. Dong X. Shaw & Albert P. M. Wagelmans, 1998. "An Algorithm for Single-Item Capacitated Economic Lot Sizing with Piecewise Linear Production Costs and General Holding Costs," Management Science, INFORMS, vol. 44(6), pages 831-838, June.
    13. Shabtay, Dvir & Kaspi, Moshe, 2006. "Parallel machine scheduling with a convex resource consumption function," European Journal of Operational Research, Elsevier, vol. 173(1), pages 92-107, August.
    14. Tarim, S. Armagan & Kingsman, Brian G., 2004. "The stochastic dynamic production/inventory lot-sizing problem with service-level constraints," International Journal of Production Economics, Elsevier, vol. 88(1), pages 105-119, March.
    15. Sampath Rajagopalan & Jayashankar M. Swaminathan, 2001. "A Coordinated Production Planning Model with Capacity Expansion and Inventory Management," Management Science, INFORMS, vol. 47(11), pages 1562-1580, November.
    16. Esra Koca & Hande Yaman & M. Selim Aktürk, 2014. "Lot Sizing with Piecewise Concave Production Costs," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 767-779, November.
    17. Tempelmeier, Horst, 2011. "A column generation heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint," Omega, Elsevier, vol. 39(6), pages 627-633, December.
    18. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    19. Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2015. "Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing," Omega, Elsevier, vol. 50(C), pages 126-140.
    20. Kayan, Rabia K. & Akturk, M. Selim, 2005. "A new bounding mechanism for the CNC machine scheduling problems with controllable processing times," European Journal of Operational Research, Elsevier, vol. 167(3), pages 624-643, December.
    21. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, vol. 26(7), pages 669-679, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manzini, Massimo & Unglert, Johannes & Gyulai, Dávid & Colledani, Marcello & Jauregui-Becker, Juan Manuel & Monostori, László & Urgo, Marcello, 2018. "An integrated framework for design, management and operation of reconfigurable assembly systems," Omega, Elsevier, vol. 78(C), pages 69-84.
    2. Fateme Akhoondi & M.M. Lotfi, 2016. "A heuristic algorithm for master production scheduling problem with controllable processing times and scenario-based demands," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3659-3676, June.
    3. Kilic, Onur A. & Tunc, Huseyin & Tarim, S. Armagan, 2018. "Heuristic policies for the stochastic economic lot sizing problem with remanufacturing under service level constraints," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1102-1109.
    4. Xide Zhu & Peijun Guo, 2020. "Bilevel programming approaches to production planning for multiple products with short life cycles," 4OR, Springer, vol. 18(2), pages 151-175, June.
    5. Taş, Duygu & Gendreau, Michel & Jabali, Ola & Jans, Raf, 2019. "A capacitated lot sizing problem with stochastic setup times and overtime," European Journal of Operational Research, Elsevier, vol. 273(1), pages 146-159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    2. Ma, Xiyuan & Rossi, Roberto & Archibald, Thomas Welsh, 2022. "Approximations for non-stationary stochastic lot-sizing under (s,Q)-type policy," European Journal of Operational Research, Elsevier, vol. 298(2), pages 573-584.
    3. Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2015. "Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing," Omega, Elsevier, vol. 50(C), pages 126-140.
    4. Timo Hilger & Florian Sahling & Horst Tempelmeier, 2016. "Capacitated dynamic production and remanufacturing planning under demand and return uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 849-876, October.
    5. Céline Gicquel & Jianqiang Cheng, 2018. "A joint chance-constrained programming approach for the single-item capacitated lot-sizing problem with stochastic demand," Annals of Operations Research, Springer, vol. 264(1), pages 123-155, May.
    6. Huseyin Tunc & Onur A. Kilic & S. Armagan Tarim & Roberto Rossi, 2018. "An Extended Mixed-Integer Programming Formulation and Dynamic Cut Generation Approach for the Stochastic Lot-Sizing Problem," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 492-506, August.
    7. Liu, Kanglin & Zhang, Zhi-Hai, 2018. "Capacitated disassembly scheduling under stochastic yield and demand," European Journal of Operational Research, Elsevier, vol. 269(1), pages 244-257.
    8. Akbalik, Ayse & Hadj-Alouane, Atidel B. & Sauer, Nathalie & Ghribi, Houcem, 2017. "NP-hard and polynomial cases for the single-item lot sizing problem with batch ordering under capacity reservation contract," European Journal of Operational Research, Elsevier, vol. 257(2), pages 483-493.
    9. Ou, Jinwen, 2017. "Improved exact algorithms to economic lot-sizing with piecewise linear production costs," European Journal of Operational Research, Elsevier, vol. 256(3), pages 777-784.
    10. Chen, Zhen & Rossi, Roberto, 2021. "A dynamic ordering policy for a stochastic inventory problem with cash constraints," Omega, Elsevier, vol. 102(C).
    11. Dural-Selcuk, Gozdem & Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2020. "The benefit of receding horizon control: Near-optimal policies for stochastic inventory control," Omega, Elsevier, vol. 97(C).
    12. Farhat, Mlouka & Akbalik, Ayse & Hadj-Alouane, Atidel B. & Sauer, Nathalie, 2019. "Lot sizing problem with batch ordering under periodic buyback contract and lost sales," International Journal of Production Economics, Elsevier, vol. 208(C), pages 500-511.
    13. Ou, Jinwen & Feng, Jiejian, 2019. "Production lot-sizing with dynamic capacity adjustment," European Journal of Operational Research, Elsevier, vol. 272(1), pages 261-269.
    14. Tunc, Huseyin & Kilic, Onur A. & Tarim, S. Armagan & Eksioglu, Burak, 2013. "A simple approach for assessing the cost of system nervousness," International Journal of Production Economics, Elsevier, vol. 141(2), pages 619-625.
    15. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2024. "Managing flexibility in stochastic multi-level lot sizing problem with service level constraints," Omega, Elsevier, vol. 122(C).
    16. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    17. Visentin, Andrea & Prestwich, Steven & Rossi, Roberto & Tarim, S. Armagan, 2021. "Computing optimal (R,s,S) policy parameters by a hybrid of branch-and-bound and stochastic dynamic programming," European Journal of Operational Research, Elsevier, vol. 294(1), pages 91-99.
    18. Gurkan, M. Edib & Tunc, Huseyin & Tarim, S. Armagan, 2022. "The joint stochastic lot sizing and pricing problem," Omega, Elsevier, vol. 108(C).
    19. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2021. "The value of aggregate service levels in stochastic lot sizing problems," Omega, Elsevier, vol. 102(C).
    20. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:53:y:2015:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.