IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v264y2018i1d10.1007_s10479-017-2662-5.html
   My bibliography  Save this article

A joint chance-constrained programming approach for the single-item capacitated lot-sizing problem with stochastic demand

Author

Listed:
  • Céline Gicquel

    (Université Paris Sud)

  • Jianqiang Cheng

    (University of Arizona)

Abstract

We study the single-item single-resource capacitated lot-sizing problem with stochastic demand. We propose to formulate this stochastic optimization problem as a joint chance-constrained program in which the probability that an inventory shortage occurs during the planning horizon is limited to a maximum acceptable risk level. We investigate the development of a new approximate solution method which can be seen as an extension of the previously published sample approximation approach. The proposed method relies on a Monte Carlo sampling of the random variables representing the demand in all planning periods except the first one. Provided there is no dependence between the demand in the first period and the demand in the later periods, this partial sampling results in the formulation of a chance-constrained program featuring a series of joint chance constraints. Each of these constraints involves a single random variable and defines a feasible set for which a conservative convex approximation can be quite easily built. Contrary to the sample approximation approach, the partial sample approximation leads to the formulation of a deterministic mixed-integer linear problem having the same number of binary variables as the original stochastic problem. Our computational results show that the proposed method is more efficient at finding feasible solutions of the original stochastic problem than the sample approximation method and that these solutions are less costly than the ones provided by the Bonferroni conservative approximation. Moreover, the computation time is significantly shorter than the one needed for the sample approximation method.

Suggested Citation

  • Céline Gicquel & Jianqiang Cheng, 2018. "A joint chance-constrained programming approach for the single-item capacitated lot-sizing problem with stochastic demand," Annals of Operations Research, Springer, vol. 264(1), pages 123-155, May.
  • Handle: RePEc:spr:annopr:v:264:y:2018:i:1:d:10.1007_s10479-017-2662-5
    DOI: 10.1007/s10479-017-2662-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2662-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2662-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tempelmeier, Horst, 2007. "On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 181(1), pages 184-194, August.
    2. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    3. Haoxun Chen, 2007. "A Lagrangian Relaxation approach for production planning with demand uncertainty," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 1(4), pages 370-390.
    4. Tempelmeier, Horst, 2011. "A column generation heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint," Omega, Elsevier, vol. 39(6), pages 627-633, December.
    5. James H. Bookbinder & Jin-Yan Tan, 1988. "Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints," Management Science, INFORMS, vol. 34(9), pages 1096-1108, September.
    6. Tempelmeier, Horst & Herpers, Sascha, 2011. "Dynamic uncapacitated lot sizing with random demand under a fillrate constraint," European Journal of Operational Research, Elsevier, vol. 212(3), pages 497-507, August.
    7. Haugen, Kjetil K. & Lokketangen, Arne & Woodruff, David L., 2001. "Progressive hedging as a meta-heuristic applied to stochastic lot-sizing," European Journal of Operational Research, Elsevier, vol. 132(1), pages 116-122, July.
    8. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    9. Vargas, Vicente, 2009. "An optimal solution for the stochastic version of the Wagner-Whitin dynamic lot-size model," European Journal of Operational Research, Elsevier, vol. 198(2), pages 447-451, October.
    10. Tarim, S. Armagan & Kingsman, Brian G., 2004. "The stochastic dynamic production/inventory lot-sizing problem with service-level constraints," International Journal of Production Economics, Elsevier, vol. 88(1), pages 105-119, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. F. F. Almeida & S. V. Conceição & L. R. Pinto & B. R. P. Oliveira & L. F. Rodrigues, 2022. "Optimal sales and operations planning for integrated steel industries," Annals of Operations Research, Springer, vol. 315(2), pages 773-790, August.
    2. Hui Liu & Zhenggang Fan & Haimin Xie & Ni Wang, 2022. "Distributionally Robust Joint Chance-Constrained Dispatch for Electricity–Gas–Heat Integrated Energy System Considering Wind Uncertainty," Energies, MDPI, vol. 15(5), pages 1-18, February.
    3. Mahmood Vahdani & Zeinab Sazvar & Kannan Govindan, 2022. "An integrated economic disposal and lot-sizing problem for perishable inventories with batch production and corrupt stock-dependent holding cost," Annals of Operations Research, Springer, vol. 315(2), pages 2135-2167, August.
    4. Chen, Zhen & Archibald, Thomas W., 2024. "Maximizing the survival probability in a cash flow inventory problem with a joint service level constraint," International Journal of Production Economics, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    2. Liu, Kanglin & Zhang, Zhi-Hai, 2018. "Capacitated disassembly scheduling under stochastic yield and demand," European Journal of Operational Research, Elsevier, vol. 269(1), pages 244-257.
    3. Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2015. "Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing," Omega, Elsevier, vol. 50(C), pages 126-140.
    4. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    5. Tunc, Huseyin & Kilic, Onur A. & Tarim, S. Armagan & Eksioglu, Burak, 2013. "A simple approach for assessing the cost of system nervousness," International Journal of Production Economics, Elsevier, vol. 141(2), pages 619-625.
    6. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2021. "The value of aggregate service levels in stochastic lot sizing problems," Omega, Elsevier, vol. 102(C).
    7. Koca, Esra & Yaman, Hande & Selim Aktürk, M., 2015. "Stochastic lot sizing problem with controllable processing times," Omega, Elsevier, vol. 53(C), pages 1-10.
    8. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Alcoba, Alejandro G. & Haijema, René, 2016. "Order quantities for perishable inventory control with non-stationary demand and a fill rate constraint," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 238-246.
    9. Rossi, Roberto & Tarim, S. Armagan & Hnich, Brahim & Prestwich, Steven, 2011. "A state space augmentation algorithm for the replenishment cycle inventory policy," International Journal of Production Economics, Elsevier, vol. 133(1), pages 377-384, September.
    10. Dural-Selcuk, Gozdem & Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2020. "The benefit of receding horizon control: Near-optimal policies for stochastic inventory control," Omega, Elsevier, vol. 97(C).
    11. Tempelmeier, Horst & Herpers, Sascha, 2011. "Dynamic uncapacitated lot sizing with random demand under a fillrate constraint," European Journal of Operational Research, Elsevier, vol. 212(3), pages 497-507, August.
    12. Ma, Xiyuan & Rossi, Roberto & Archibald, Thomas Welsh, 2022. "Approximations for non-stationary stochastic lot-sizing under (s,Q)-type policy," European Journal of Operational Research, Elsevier, vol. 298(2), pages 573-584.
    13. Roberto Rossi & S. Tarim & Brahim Hnich & Steven Prestwich, 2012. "Constraint programming for stochastic inventory systems under shortage cost," Annals of Operations Research, Springer, vol. 195(1), pages 49-71, May.
    14. Tarim, S. Armagan & Dogru, Mustafa K. & Özen, Ulas & Rossi, Roberto, 2011. "An efficient computational method for a stochastic dynamic lot-sizing problem under service-level constraints," European Journal of Operational Research, Elsevier, vol. 215(3), pages 563-571, December.
    15. Choudhary, Devendra & Shankar, Ravi, 2015. "The value of VMI beyond information sharing in a single supplier multiple retailers supply chain under a non-stationary (Rn, Sn) policy," Omega, Elsevier, vol. 51(C), pages 59-70.
    16. Govindan, Kannan, 2015. "The optimal replenishment policy for time-varying stochastic demand under vendor managed inventory," European Journal of Operational Research, Elsevier, vol. 242(2), pages 402-423.
    17. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Haijema, René & van der Vorst, Jack G.A.J., 2014. "An MILP approximation for ordering perishable products with non-stationary demand and service level constraints," International Journal of Production Economics, Elsevier, vol. 157(C), pages 133-146.
    18. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2024. "Managing flexibility in stochastic multi-level lot sizing problem with service level constraints," Omega, Elsevier, vol. 122(C).
    19. Kilic, Onur A. & Tunc, Huseyin & Tarim, S. Armagan, 2018. "Heuristic policies for the stochastic economic lot sizing problem with remanufacturing under service level constraints," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1102-1109.
    20. Gruson, Matthieu & Cordeau, Jean-François & Jans, Raf, 2021. "Benders decomposition for a stochastic three-level lot sizing and replenishment problem with a distribution structure," European Journal of Operational Research, Elsevier, vol. 291(1), pages 206-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:264:y:2018:i:1:d:10.1007_s10479-017-2662-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.