IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v47y2001i8p1081-1100.html
   My bibliography  Save this article

Capacity Acquisition, Subcontracting, and Lot Sizing

Author

Listed:
  • Alper Atamtürk

    (Department of Industrial Engineering and Operations Research, University of California, Berkeley, California)

  • Dorit S. Hochbaum

    (Department of Industrial Engineering and Operations Research, and Walter A. Haas School of Business, University of California, Berkeley, California)

Abstract

The fundamental question encountered in acquiring capacity to meet nonstationary demand over a multiperiod horizon is how to balance the trade-off between having insufficient capacity in some periods and excess capacity in others. In the former situation, part of the demand is subcontracted while, in the latter, capacity that has been paid for is rendered idle. Capacity and subcontracting decisions arise in many economic activities ranging from production capacity planning in semiconductor fabs to leasing communication networks, from transportation contracts to staffing of call centers. In this paper, we investigate the trade-offs between acquiring capacity, subcontracting, production, and holding inventory to satisfy nonstationary demand over a finite horizon. We present capacity acquisition models with holding and without holding inventory and identify forecast-robust properties of the models that restrict the dependence of optimal capacity decisions on the demand forecasts. We develop algorithms for numerous practical cost structures involving variable and fixed charges and prove that they all have polynomial time complexity. For models with inventory, we solve a sequence of constant capacity lot-sizing and subcontracting subproblems, which is also of independent interest.

Suggested Citation

  • Alper Atamtürk & Dorit S. Hochbaum, 2001. "Capacity Acquisition, Subcontracting, and Lot Sizing," Management Science, INFORMS, vol. 47(8), pages 1081-1100, August.
  • Handle: RePEc:inm:ormnsc:v:47:y:2001:i:8:p:1081-1100
    DOI: 10.1287/mnsc.47.8.1081.10232
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.47.8.1081.10232
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.47.8.1081.10232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Albert Wagelmans & Stan van Hoesel & Antoon Kolen, 1992. "Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case," Operations Research, INFORMS, vol. 40(1-supplem), pages 145-156, February.
    2. Morton I. Kamien & Lode Li, 1990. "Subcontracting, Coordination, Flexibility, and Production Smoothing in Aggregate Planning," Management Science, INFORMS, vol. 36(11), pages 1352-1363, November.
    3. Michael Florian & Morton Klein, 1971. "Deterministic Production Planning with Concave Costs and Capacity Constraints," Management Science, INFORMS, vol. 18(1), pages 12-20, September.
    4. Willard I. Zangwill, 1966. "A Deterministic Multi-Period Production Scheduling Model with Backlogging," Management Science, INFORMS, vol. 13(1), pages 105-119, September.
    5. Stephen F. Love, 1973. "Bounded Production and Inventory Models with Piecewise Concave Costs," Management Science, INFORMS, vol. 20(3), pages 313-318, November.
    6. Kenneth R. Baker & Paul Dixon & Michael J. Magazine & Edward A. Silver, 1978. "An Algorithm for the Dynamic Lot-Size Problem with Time-Varying Production Capacity Constraints," Management Science, INFORMS, vol. 24(16), pages 1710-1720, December.
    7. James R. Bradley & Bruce C. Arntzen, 1999. "The Simultaneous Planning of Production, Capacity, and Inventory in Seasonal Demand Environments," Operations Research, INFORMS, vol. 47(6), pages 795-806, December.
    8. Hanan Luss, 1982. "Operations Research and Capacity Expansion Problems: A Survey," Operations Research, INFORMS, vol. 30(5), pages 907-947, October.
    9. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    10. POCHET, Yves & WOLSEY, Laurence A., 1993. "Lot-sizing with constant batches: formulation and valid inequalities," LIDAM Reprints CORE 1066, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Gabriel R. Bitran & Horacio H. Yanasse, 1982. "Computational Complexity of the Capacitated Lot Size Problem," Management Science, INFORMS, vol. 28(10), pages 1174-1186, October.
    12. Sang-Bum Lee & Hanan Luss, 1987. "Multifacility-Type Capacity Expansion Planning: Algorithms and Complexities," Operations Research, INFORMS, vol. 35(2), pages 249-253, April.
    13. Shanling Li & Devanath Tirupati, 1994. "Dynamic Capacity Expansion Problem with Multiple Products: Technology Selection and Timing of Capacity Additions," Operations Research, INFORMS, vol. 42(5), pages 958-976, October.
    14. Awi Federgruen & Michal Tzur, 1991. "A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0(n log n) or 0(n) Time," Management Science, INFORMS, vol. 37(8), pages 909-925, August.
    15. Alok Aggarwal & James K. Park, 1993. "Improved Algorithms for Economic Lot Size Problems," Operations Research, INFORMS, vol. 41(3), pages 549-571, June.
    16. Yves Pochet & Laurence A. Wolsey, 1993. "Lot-Sizing with Constant Batches: Formulation and Valid Inequalities," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 767-785, November.
    17. Jan A. Van Mieghem, 1999. "Coordinating Investment, Production, and Subcontracting," Management Science, INFORMS, vol. 45(7), pages 954-971, July.
    18. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, vol. 26(7), pages 669-679, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    2. Hark-Chin Hwang, 2010. "Economic Lot-Sizing for Integrated Production and Transportation," Operations Research, INFORMS, vol. 58(2), pages 428-444, April.
    3. Hark-Chin Hwang, 2009. "Inventory Replenishment and Inbound Shipment Scheduling Under a Minimum Replenishment Policy," Transportation Science, INFORMS, vol. 43(2), pages 244-264, May.
    4. Laurence A. Wolsey, 2002. "Solving Multi-Item Lot-Sizing Problems with an MIP Solver Using Classification and Reformulation," Management Science, INFORMS, vol. 48(12), pages 1587-1602, December.
    5. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    6. Yasemin Merzifonluoğlu & Joseph Geunes & H.E. Romeijn, 2007. "Integrated capacity, demand, and production planning with subcontracting and overtime options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 433-447, June.
    7. Ming Zhao & Minjiao Zhang, 2020. "Multiechelon Lot Sizing: New Complexities and Inequalities," Operations Research, INFORMS, vol. 68(2), pages 534-551, March.
    8. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P. M. Wagelmans, 2005. "Integrated Lot Sizing in Serial Supply Chains with Production Capacities," Management Science, INFORMS, vol. 51(11), pages 1706-1719, November.
    9. van Hoesel, C.P.M. & Romeijn, H.E. & Romero Morales, M.D. & Wagelmans, A., 2002. "Polynomial time algorithms for some multi-level lot-sizing problems with production capacities," Research Memorandum 018, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    10. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    11. Hwang, Hark-Chin & Jaruphongsa, Wikrom, 2008. "Dynamic lot-sizing model for major and minor demands," European Journal of Operational Research, Elsevier, vol. 184(2), pages 711-724, January.
    12. Ayse Akbalik & Bernard Penz & Christophe Rapine, 2015. "Capacitated lot sizing problems with inventory bounds," Annals of Operations Research, Springer, vol. 229(1), pages 1-18, June.
    13. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    14. Mathieu Van Vyve, 2007. "Algorithms for Single-Item Lot-Sizing Problems with Constant Batch Size," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 594-613, August.
    15. Stan van Hoesel & H. Edwin Romeijn & Dolores Romero Morales & Albert P.M. Wagelmans, 2002. "Polynomial Time Algorithms for Some Multi-Level Lot-Sizing Problems with Production Capacities," Tinbergen Institute Discussion Papers 02-066/4, Tinbergen Institute.
    16. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    17. Atamturk, Alper & Munoz, Juan Carlos, 2002. "A Study of the Lot-Sizing Polytope," University of California Transportation Center, Working Papers qt6zz2g0z4, University of California Transportation Center.
    18. Vernon Ning Hsu, 2000. "Dynamic Economic Lot Size Model with Perishable Inventory," Management Science, INFORMS, vol. 46(8), pages 1159-1169, August.
    19. Goisque, Guillaume & Rapine, Christophe, 2017. "An efficient algorithm for the 2-level capacitated lot-sizing problem with identical capacities at both levels," European Journal of Operational Research, Elsevier, vol. 261(3), pages 918-928.
    20. van den Heuvel, W.J. & Wagelmans, A.P.M., 2003. "A geometric algorithm to solve the NI/G/NI/ND capacitated lot-sizing problem in O(T2) time," Econometric Institute Research Papers EI 2003-24, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:47:y:2001:i:8:p:1081-1100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.