IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v30y2018i3p492-506.html
   My bibliography  Save this article

An Extended Mixed-Integer Programming Formulation and Dynamic Cut Generation Approach for the Stochastic Lot-Sizing Problem

Author

Listed:
  • Huseyin Tunc

    (Department of Policy and Strategy Studies, Hacettepe University, Ankara, Turkey)

  • Onur A. Kilic

    (Department of Operations, University of Groningen, 9700 AV Groningen, Netherlands)

  • S. Armagan Tarim

    (Department of Management, Cankaya University, Ankara, 06800 Turkey; Cork University Business School, University College Cork, T12 K8AF, Ireland)

  • Roberto Rossi

    (Business School, University of Edinburgh, Edinburgh EH8 9JS, United Kingdom)

Abstract

We present an extended mixed-integer programming formulation of the stochastic lot-sizing problem for the static-dynamic uncertainty strategy. The proposed formulation is significantly more time efficient as compared to existing formulations in the literature and it can handle variants of the stochastic lot-sizing problem characterized by penalty costs and service level constraints, as well as backorders and lost sales. Also, besides being capable of working with a predefined piecewise linear approximation of the cost function—as is the case in earlier formulations—it has the functionality of finding an optimal cost solution with an arbitrary level of precision by means of a novel dynamic cut generation approach.

Suggested Citation

  • Huseyin Tunc & Onur A. Kilic & S. Armagan Tarim & Roberto Rossi, 2018. "An Extended Mixed-Integer Programming Formulation and Dynamic Cut Generation Approach for the Stochastic Lot-Sizing Problem," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 492-506, August.
  • Handle: RePEc:inm:orijoc:v:30:y:2018:i:3:p:492-506
    DOI: 10.1287/ijoc.2017.0792
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2017.0792
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2017.0792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    2. James H. Bookbinder & Jin-Yan Tan, 1988. "Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints," Management Science, INFORMS, vol. 34(9), pages 1096-1108, September.
    3. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    4. Rossi, Roberto & Tarim, S. Armagan & Hnich, Brahim & Prestwich, Steven, 2011. "A state space augmentation algorithm for the replenishment cycle inventory policy," International Journal of Production Economics, Elsevier, vol. 133(1), pages 377-384, September.
    5. Fatih Mutlu & Sila Çetinkaya & James Bookbinder, 2010. "An analytical model for computing the optimal time-and-quantity-based policy for consolidated shipments," IISE Transactions, Taylor & Francis Journals, vol. 42(5), pages 367-377.
    6. Kilic, Onur A. & Tarim, S. Armagan, 2011. "An investigation of setup instability in non-stationary stochastic inventory systems," International Journal of Production Economics, Elsevier, vol. 133(1), pages 286-292, September.
    7. Tarim, S. Armagan & Smith, Barbara M., 2008. "Constraint programming for computing non-stationary (R, S) inventory policies," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1004-1021, September.
    8. Tarim, S. Armagan & Kingsman, Brian G., 2004. "The stochastic dynamic production/inventory lot-sizing problem with service-level constraints," International Journal of Production Economics, Elsevier, vol. 88(1), pages 105-119, March.
    9. Roberto Rossi & S. Tarim & Brahim Hnich & Steven Prestwich, 2012. "Constraint programming for stochastic inventory systems under shortage cost," Annals of Operations Research, Springer, vol. 195(1), pages 49-71, May.
    10. Tarim, S. Armagan & Dogru, Mustafa K. & Özen, Ulas & Rossi, Roberto, 2011. "An efficient computational method for a stochastic dynamic lot-sizing problem under service-level constraints," European Journal of Operational Research, Elsevier, vol. 215(3), pages 563-571, December.
    11. Tarim, S. Armagan & Kingsman, Brian G., 2006. "Modelling and computing (Rn, Sn) policies for inventory systems with non-stationary stochastic demand," European Journal of Operational Research, Elsevier, vol. 174(1), pages 581-599, October.
    12. Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2015. "Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing," Omega, Elsevier, vol. 50(C), pages 126-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2021. "The value of aggregate service levels in stochastic lot sizing problems," Omega, Elsevier, vol. 102(C).
    2. Simon Thevenin & Yossiri Adulyasak & Jean-François Cordeau, 2022. "Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3151-3169, November.
    3. Ma, Xiyuan & Rossi, Roberto & Archibald, Thomas Welsh, 2022. "Approximations for non-stationary stochastic lot-sizing under (s,Q)-type policy," European Journal of Operational Research, Elsevier, vol. 298(2), pages 573-584.
    4. Gruson, Matthieu & Cordeau, Jean-François & Jans, Raf, 2021. "Benders decomposition for a stochastic three-level lot sizing and replenishment problem with a distribution structure," European Journal of Operational Research, Elsevier, vol. 291(1), pages 206-217.
    5. Visentin, Andrea & Prestwich, Steven & Rossi, Roberto & Tarim, S. Armagan, 2021. "Computing optimal (R,s,S) policy parameters by a hybrid of branch-and-bound and stochastic dynamic programming," European Journal of Operational Research, Elsevier, vol. 294(1), pages 91-99.
    6. Gutierrez-Alcoba, Alejandro & Rossi, Roberto & Martin-Barragan, Belen & Embley, Tim, 2023. "The stochastic inventory routing problem on electric roads," European Journal of Operational Research, Elsevier, vol. 310(1), pages 156-167.
    7. Rossi, Roberto & Tomasella, Maurizio & Martin-Barragan, Belen & Embley, Tim & Walsh, Christopher & Langston, Matthew, 2019. "The Dynamic Bowser Routing Problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 108-126.
    8. Dural-Selcuk, Gozdem & Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2020. "The benefit of receding horizon control: Near-optimal policies for stochastic inventory control," Omega, Elsevier, vol. 97(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2015. "Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing," Omega, Elsevier, vol. 50(C), pages 126-140.
    2. Dural-Selcuk, Gozdem & Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2020. "The benefit of receding horizon control: Near-optimal policies for stochastic inventory control," Omega, Elsevier, vol. 97(C).
    3. Gurkan, M. Edib & Tunc, Huseyin & Tarim, S. Armagan, 2022. "The joint stochastic lot sizing and pricing problem," Omega, Elsevier, vol. 108(C).
    4. Visentin, Andrea & Prestwich, Steven & Rossi, Roberto & Tarim, S. Armagan, 2021. "Computing optimal (R,s,S) policy parameters by a hybrid of branch-and-bound and stochastic dynamic programming," European Journal of Operational Research, Elsevier, vol. 294(1), pages 91-99.
    5. Ma, Xiyuan & Rossi, Roberto & Archibald, Thomas Welsh, 2022. "Approximations for non-stationary stochastic lot-sizing under (s,Q)-type policy," European Journal of Operational Research, Elsevier, vol. 298(2), pages 573-584.
    6. Roberto Rossi & S. Tarim & Brahim Hnich & Steven Prestwich, 2012. "Constraint programming for stochastic inventory systems under shortage cost," Annals of Operations Research, Springer, vol. 195(1), pages 49-71, May.
    7. Liu, Kanglin & Zhang, Zhi-Hai, 2018. "Capacitated disassembly scheduling under stochastic yield and demand," European Journal of Operational Research, Elsevier, vol. 269(1), pages 244-257.
    8. Tunc, Huseyin & Kilic, Onur A. & Tarim, S. Armagan & Eksioglu, Burak, 2013. "A simple approach for assessing the cost of system nervousness," International Journal of Production Economics, Elsevier, vol. 141(2), pages 619-625.
    9. Roberto Rossi & S. Armagan Tarim & Ramesh Bollapragada, 2012. "Constraint-Based Local Search for Inventory Control Under Stochastic Demand and Lead Time," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 66-80, February.
    10. Chen, Zhen & Rossi, Roberto, 2021. "A dynamic ordering policy for a stochastic inventory problem with cash constraints," Omega, Elsevier, vol. 102(C).
    11. Choudhary, Devendra & Shankar, Ravi, 2015. "The value of VMI beyond information sharing in a single supplier multiple retailers supply chain under a non-stationary (Rn, Sn) policy," Omega, Elsevier, vol. 51(C), pages 59-70.
    12. Koca, Esra & Yaman, Hande & Selim Aktürk, M., 2015. "Stochastic lot sizing problem with controllable processing times," Omega, Elsevier, vol. 53(C), pages 1-10.
    13. Özen, Ulaş & Doğru, Mustafa K. & Armagan Tarim, S., 2012. "Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem," Omega, Elsevier, vol. 40(3), pages 348-357.
    14. Tempelmeier, Horst, 2007. "On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints," European Journal of Operational Research, Elsevier, vol. 181(1), pages 184-194, August.
    15. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2023. "A mathematical programming-based solution method for the nonstationary inventory problem under correlated demand," European Journal of Operational Research, Elsevier, vol. 304(2), pages 515-524.
    16. Rossi, Roberto & Tarim, S. Armagan & Hnich, Brahim & Prestwich, Steven, 2010. "Computing the non-stationary replenishment cycle inventory policy under stochastic supplier lead-times," International Journal of Production Economics, Elsevier, vol. 127(1), pages 180-189, September.
    17. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2018. "Computing non-stationary (s, S) policies using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 271(2), pages 490-500.
    18. Rossi, Roberto & Tarim, S. Armagan & Hnich, Brahim & Prestwich, Steven, 2011. "A state space augmentation algorithm for the replenishment cycle inventory policy," International Journal of Production Economics, Elsevier, vol. 133(1), pages 377-384, September.
    19. Pauls-Worm, Karin G.J. & Hendrix, Eligius M.T. & Haijema, René & van der Vorst, Jack G.A.J., 2014. "An MILP approximation for ordering perishable products with non-stationary demand and service level constraints," International Journal of Production Economics, Elsevier, vol. 157(C), pages 133-146.
    20. Timo Hilger & Florian Sahling & Horst Tempelmeier, 2016. "Capacitated dynamic production and remanufacturing planning under demand and return uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 849-876, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:30:y:2018:i:3:p:492-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.