IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v256y2017i3p777-784.html
   My bibliography  Save this article

Improved exact algorithms to economic lot-sizing with piecewise linear production costs

Author

Listed:
  • Ou, Jinwen

Abstract

In this article we study a classical single-item economic lot-sizing problem, where production cost functions are assumed to be piecewise linear. The lot-sizing problem is fundamental in lot-sizing research, and it is applicable to a wide range of production planning models. The intractability of the problem is related to the value of m, the number of different breakpoints of the production cost functions. When m is arbitrary, the problem is known to be NP-hard (Florian, Lenstra & Rinnooy Kan, 1980). However, if m is fixed, then it can be solved in polynomial time (Koca, Yaman & Akturk, 2014). So far, the most efficient algorithm to solve the problem has a complexity of O(T2m+3), where T is the number of periods in the planning horizon (Koca et al., 2014). In this article we present an improved exact algorithm for solving the problem, where the complexity is reduced to O(Tm+2·logT). As such it also improves upon the computational efficiency of solving some existing lot-sizing problems which are important special cases of our model. In order to achieve a more efficient implementation, our algorithm makes use of a specific data structure, named range minimum query (RMQ).

Suggested Citation

  • Ou, Jinwen, 2017. "Improved exact algorithms to economic lot-sizing with piecewise linear production costs," European Journal of Operational Research, Elsevier, vol. 256(3), pages 777-784.
  • Handle: RePEc:eee:ejores:v:256:y:2017:i:3:p:777-784
    DOI: 10.1016/j.ejor.2016.06.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716304611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.06.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hellion, Bertrand & Mangione, Fabien & Penz, Bernard, 2012. "A polynomial time algorithm to solve the single-item capacitated lot sizing problem with minimum order quantities and concave costs," European Journal of Operational Research, Elsevier, vol. 222(1), pages 10-16.
    2. Okhrin, Irena & Richter, Knut, 2011. "An O(T3) algorithm for the capacitated lot sizing problem with minimum order quantities," European Journal of Operational Research, Elsevier, vol. 211(3), pages 507-514, June.
    3. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    4. Dong X. Shaw & Albert P. M. Wagelmans, 1998. "An Algorithm for Single-Item Capacitated Economic Lot Sizing with Piecewise Linear Production Costs and General Holding Costs," Management Science, INFORMS, vol. 44(6), pages 831-838, June.
    5. Lap Mui Ann Chan & Ana Muriel & Zuo-Jun Shen & David Simchi-Levi, 2002. "On the Effectiveness of Zero-Inventory-Ordering Policies for the Economic Lot-Sizing Model with a Class of Piecewise Linear Cost Structures," Operations Research, INFORMS, vol. 50(6), pages 1058-1067, December.
    6. Michael Florian & Morton Klein, 1971. "Deterministic Production Planning with Concave Costs and Capacity Constraints," Management Science, INFORMS, vol. 18(1), pages 12-20, September.
    7. Stephen F. Love, 1973. "Bounded Production and Inventory Models with Piecewise Concave Costs," Management Science, INFORMS, vol. 20(3), pages 313-318, November.
    8. Kenneth R. Baker & Paul Dixon & Michael J. Magazine & Edward A. Silver, 1978. "An Algorithm for the Dynamic Lot-Size Problem with Time-Varying Production Capacity Constraints," Management Science, INFORMS, vol. 24(16), pages 1710-1720, December.
    9. Esra Koca & Hande Yaman & M. Selim Aktürk, 2014. "Lot Sizing with Piecewise Concave Production Costs," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 767-779, November.
    10. Cary Swoveland, 1975. "A Deterministic Multi-Period Production Planning Model with Piecewise Concave Production and Holding-Backorder Costs," Management Science, INFORMS, vol. 21(9), pages 1007-1013, May.
    11. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    12. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    13. Sang-Bum Lee & Paul H. Zipkin, 1989. "A Dynamic Lot-Size Model with Make-or-Buy Decisions," Management Science, INFORMS, vol. 35(4), pages 447-458, April.
    14. M. Florian & J. K. Lenstra & A. H. G. Rinnooy Kan, 1980. "Deterministic Production Planning: Algorithms and Complexity," Management Science, INFORMS, vol. 26(7), pages 669-679, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ou, Jinwen & Feng, Jiejian, 2019. "Production lot-sizing with dynamic capacity adjustment," European Journal of Operational Research, Elsevier, vol. 272(1), pages 261-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung-Lun Li & Qingying Li, 2016. "Polynomial-Time Solvability of Dynamic Lot Size Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(03), pages 1-20, June.
    2. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    3. Ou, Jinwen & Feng, Jiejian, 2019. "Production lot-sizing with dynamic capacity adjustment," European Journal of Operational Research, Elsevier, vol. 272(1), pages 261-269.
    4. Esra Koca & Hande Yaman & M. Selim Aktürk, 2014. "Lot Sizing with Piecewise Concave Production Costs," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 767-779, November.
    5. Liu, X. & Tu, Yl., 2008. "Production planning with limited inventory capacity and allowed stockout," International Journal of Production Economics, Elsevier, vol. 111(1), pages 180-191, January.
    6. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    7. Hong, Zhaofu & Chu, Chengbin & Yu, Yugang, 2016. "Dual-mode production planning for manufacturing with emission constraints," European Journal of Operational Research, Elsevier, vol. 251(1), pages 96-106.
    8. Hwang, Hark-Chin & Jaruphongsa, Wikrom, 2008. "Dynamic lot-sizing model for major and minor demands," European Journal of Operational Research, Elsevier, vol. 184(2), pages 711-724, January.
    9. Archetti, Claudia & Bertazzi, Luca & Grazia Speranza, M., 2014. "Polynomial cases of the economic lot sizing problem with cost discounts," European Journal of Operational Research, Elsevier, vol. 237(2), pages 519-527.
    10. C. P. M. van Hoesel & A. P. M. Wagelmans, 2001. "Fully Polynomial Approximation Schemes for Single-Item Capacitated Economic Lot-Sizing Problems," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 339-357, May.
    11. Chung-Lun Li & Vernon Ning Hsu & Wen-Qiang Xiao, 2004. "Dynamic Lot Sizing with Batch Ordering and Truckload Discounts," Operations Research, INFORMS, vol. 52(4), pages 639-654, August.
    12. Bunn, Kevin A. & Ventura, José A., 2023. "A dynamic programming approach for the two-product capacitated lot-sizing problem with concave costs," European Journal of Operational Research, Elsevier, vol. 307(1), pages 116-129.
    13. Alper Atamtürk & Dorit S. Hochbaum, 2001. "Capacity Acquisition, Subcontracting, and Lot Sizing," Management Science, INFORMS, vol. 47(8), pages 1081-1100, August.
    14. van Hoesel, C.P.M. & Wagelmans, A.P.M., 1997. "Fully Polynomial Approximation Schemes for Single-Item Capacitated Economic Lot-Sizing Problems," Econometric Institute Research Papers EI 9735/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Akbalik, A. & Pochet, Y., 2009. "Valid inequalities for the single-item capacitated lot sizing problem with step-wise costs," European Journal of Operational Research, Elsevier, vol. 198(2), pages 412-434, October.
    16. van Hoesel, C.P.M. & Wagelmans, A., 1997. "Fully polynomial approximation schemes for single-item capacitated economic lot-sizing problems," Research Memorandum 029, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    17. Akbalik, Ayse & Penz, Bernard, 2009. "Exact methods for single-item capacitated lot sizing problem with alternative machines and piece-wise linear production costs," International Journal of Production Economics, Elsevier, vol. 119(2), pages 367-379, June.
    18. Hnaien, Faicel & Afsar, Hasan Murat, 2017. "Robust single-item lot-sizing problems with discrete-scenario lead time," International Journal of Production Economics, Elsevier, vol. 185(C), pages 223-229.
    19. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Akbalik, Ayse & Hadj-Alouane, Atidel B. & Sauer, Nathalie & Ghribi, Houcem, 2017. "NP-hard and polynomial cases for the single-item lot sizing problem with batch ordering under capacity reservation contract," European Journal of Operational Research, Elsevier, vol. 257(2), pages 483-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:256:y:2017:i:3:p:777-784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.