IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v104y2006i2p260-270.html
   My bibliography  Save this article

A mixed-integer linear programming model for the continuous casting planning

Author

Listed:
  • Bellabdaoui, A.
  • Teghem, J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Bellabdaoui, A. & Teghem, J., 2006. "A mixed-integer linear programming model for the continuous casting planning," International Journal of Production Economics, Elsevier, vol. 104(2), pages 260-270, December.
  • Handle: RePEc:eee:proeco:v:104:y:2006:i:2:p:260-270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(04)00438-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goutam Dutta & Robert Fourer, 2001. "A Survey of Mathematical Programming Applications in Integrated Steel Plants," Manufacturing & Service Operations Management, INFORMS, vol. 3(4), pages 387-400.
    2. Lopez, Leo & Carter, Michael W. & Gendreau, Michel, 1998. "The hot strip mill production scheduling problem: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 317-335, April.
    3. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2001. "A review of planning and scheduling systems and methods for integrated steel production," European Journal of Operational Research, Elsevier, vol. 133(1), pages 1-20, August.
    4. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A mathematical programming model for scheduling steelmaking-continuous casting production," European Journal of Operational Research, Elsevier, vol. 120(2), pages 423-435, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dayong Han & Qiuhua Tang & Zikai Zhang & Zixiang Li, 2020. "An Improved Migrating Birds Optimization Algorithm for a Hybrid Flow Shop Scheduling within Steel Plants," Mathematics, MDPI, vol. 8(10), pages 1-28, September.
    2. Tang, Lixin & Wang, Gongshu, 2008. "Decision support system for the batching problems of steelmaking and continuous-casting production," Omega, Elsevier, vol. 36(6), pages 976-991, December.
    3. Pieter Moerloose & Broos Maenhout, 2023. "A two-stage local search heuristic for solving the steelmaking continuous casting scheduling problem with dual shared-resource and blocking constraints," Operational Research, Springer, vol. 23(1), pages 1-43, March.
    4. Pan, Quan-Ke, 2016. "An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling," European Journal of Operational Research, Elsevier, vol. 250(3), pages 702-714.
    5. Ruilin Pan & Qiong Wang & Zhenghong Li & Jianhua Cao & Yongjin Zhang, 2022. "Steelmaking-continuous casting scheduling problem with multi-position refining furnaces under time-of-use tariffs," Annals of Operations Research, Springer, vol. 310(1), pages 119-151, March.
    6. Antonio Jiménez-Martín & Alfonso Mateos & Josefa Z. Hernández, 2021. "Aluminium Parts Casting Scheduling Based on Simulated Annealing," Mathematics, MDPI, vol. 9(7), pages 1-18, March.
    7. Mao, Kun & Pan, Quan-ke & Pang, Xinfu & Chai, Tianyou, 2014. "A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process," European Journal of Operational Research, Elsevier, vol. 236(1), pages 51-60.
    8. Lili Dai & He Lu & Dezheng Hua & Xinhua Liu & Hongming Chen & Adam Glowacz & Grzegorz Królczyk & Zhixiong Li, 2022. "A Novel Production Scheduling Approach Based on Improved Hybrid Genetic Algorithm," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    9. Wichmann, Matthias Gerhard & Spengler, Thomas Stefan, 2015. "Slab scheduling at parallel continuous casters," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 551-562.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torres, Nelson & Greivel, Gus & Betz, Joshua & Moreno, Eduardo & Newman, Alexandra & Thomas, Brian, 2024. "Optimizing steel coil production schedules under continuous casting and hot rolling," European Journal of Operational Research, Elsevier, vol. 314(2), pages 496-508.
    2. Antonio Jiménez-Martín & Alfonso Mateos & Josefa Z. Hernández, 2021. "Aluminium Parts Casting Scheduling Based on Simulated Annealing," Mathematics, MDPI, vol. 9(7), pages 1-18, March.
    3. Casado, Silvia & Laguna, Manuel & Pacheco, Joaquín & Puche, Julio C., 2020. "Grouping products for the optimization of production processes: A case in the steel manufacturing industry," European Journal of Operational Research, Elsevier, vol. 286(1), pages 190-202.
    4. Slotnick, Susan A., 2011. "Optimal and heuristic lead-time quotation for an integrated steel mill with a minimum batch size," European Journal of Operational Research, Elsevier, vol. 210(3), pages 527-536, May.
    5. Singer, Marcos & Donoso, Patricio, 2008. "Empirical validation of an activity-based optimization system," International Journal of Production Economics, Elsevier, vol. 113(1), pages 335-345, May.
    6. Lixin Tang & Ying Meng & Zhi-Long Chen & Jiyin Liu, 2016. "Coil Batching to Improve Productivity and Energy Utilization in Steel Production," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 262-279, May.
    7. As'ad, Rami & Demirli, Kudret, 2010. "Production scheduling in steel rolling mills with demand substitution: Rolling horizon implementation and approximations," International Journal of Production Economics, Elsevier, vol. 126(2), pages 361-369, August.
    8. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2001. "A review of planning and scheduling systems and methods for integrated steel production," European Journal of Operational Research, Elsevier, vol. 133(1), pages 1-20, August.
    9. Zanoni, Simone & Zavanella, Lucio, 2005. "Model and analysis of integrated production-inventory system: The case of steel production," International Journal of Production Economics, Elsevier, vol. 93(1), pages 197-205, January.
    10. Pieter Moerloose & Broos Maenhout, 2023. "A two-stage local search heuristic for solving the steelmaking continuous casting scheduling problem with dual shared-resource and blocking constraints," Operational Research, Springer, vol. 23(1), pages 1-43, March.
    11. Mujawar, Sachin & Huang, Simin & Nagi, Rakesh, 2012. "Scheduling to minimize stringer utilization for continuous annealing operations," Omega, Elsevier, vol. 40(4), pages 437-444.
    12. Tang, Lixin & Zhao, Yufang, 2008. "Scheduling a single semi-continuous batching machine," Omega, Elsevier, vol. 36(6), pages 992-1004, December.
    13. Tang, Lixin & Wang, Gongshu, 2008. "Decision support system for the batching problems of steelmaking and continuous-casting production," Omega, Elsevier, vol. 36(6), pages 976-991, December.
    14. Pan, Quan-Ke, 2016. "An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling," European Journal of Operational Research, Elsevier, vol. 250(3), pages 702-714.
    15. Karen Puttkammer & Matthias G. Wichmann & Thomas S. Spengler, 2016. "A GRASP heuristic for the hot strip mill scheduling problem under consideration of energy consumption," Journal of Business Economics, Springer, vol. 86(5), pages 537-573, July.
    16. Liu, Min & Jiang, Shenglong & Wu, Cheng, 2015. "A soft-decision based two-layered scheduling approach for uncertain steelmaking-continuous casting processAuthor-Name: Hao, Jinghua," European Journal of Operational Research, Elsevier, vol. 244(3), pages 966-979.
    17. Tang, Lixin & Wang, Xianpeng, 2009. "Simultaneously scheduling multiple turns for steel color-coating production," European Journal of Operational Research, Elsevier, vol. 198(3), pages 715-725, November.
    18. Jianyu Long & Zhong Zheng & Xiaoqiang Gao & Panos M Pardalos, 2016. "A hybrid multi-objective evolutionary algorithm based on NSGA-II for practical scheduling with release times in steel plants," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1184-1199, September.
    19. J. F. F. Almeida & S. V. Conceição & L. R. Pinto & B. R. P. Oliveira & L. F. Rodrigues, 2022. "Optimal sales and operations planning for integrated steel industries," Annals of Operations Research, Springer, vol. 315(2), pages 773-790, August.
    20. Vo[ss], Stefan & Witt, Andreas, 2007. "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application," International Journal of Production Economics, Elsevier, vol. 105(2), pages 445-458, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:104:y:2006:i:2:p:260-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.