IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v33y2023i3p119-139id8.html
   My bibliography  Save this article

Pricing-inventory model with discrete demand and delivery orders

Author

Listed:
  • Heibatolah Sadeghi
  • Hêriş Golpîra
  • Faicel Hnaien
  • Cosimo Magazzino

Abstract

This paper aims to develop an inventory model considering discrete demand, coordinated pricing, and multiple delivery policy in a single-buyer single- supplier production-inventory system. The shortage is not allowed and the planning horizon is considered to be infinite. The main objective of the framework is to equip the decision-maker with optimal order, pricing, and shipment quantities to maximize the total profit of the system. The results obtained from the numerical example reveal that the proposed approach with an average selling price equal to about 94% of the classical model, has resulted in an average profit increase of about 16% and an average order increase of about 34% compared to the classical approach.

Suggested Citation

  • Heibatolah Sadeghi & Hêriş Golpîra & Faicel Hnaien & Cosimo Magazzino, 2023. "Pricing-inventory model with discrete demand and delivery orders," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(3), pages 119-139.
  • Handle: RePEc:wut:journl:v:33:y:2023:i:3:p:119-139:id:8
    DOI: 10.37190/ord230308
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/ord2023vol33no3_8.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord230308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ford W. Harris, 1990. "How Many Parts to Make at Once," Operations Research, INFORMS, vol. 38(6), pages 947-950, December.
    2. Kevin Weng, Z., 1995. "Modeling quantity discounts under general price-sensitive demand functions: Optimal policies and relationships," European Journal of Operational Research, Elsevier, vol. 86(2), pages 300-314, October.
    3. Shoude Li, 2014. "Optimal control of the production–inventory system with deteriorating items and tradable emission permits," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(11), pages 2390-2401, November.
    4. Hoque, M. A. & Goyal, S. K., 2000. "An optimal policy for a single-vendor single-buyer integrated production-inventory system with capacity constraint of the transport equipment," International Journal of Production Economics, Elsevier, vol. 65(3), pages 305-315, May.
    5. Rowshannahad, Mehdi & Absi, Nabil & Dauzère-Pérès, Stéphane & Cassini, Bernard, 2018. "Multi-item bi-level supply chain planning with multiple remanufacturing of reusable by-products," International Journal of Production Economics, Elsevier, vol. 198(C), pages 25-37.
    6. Yang, P. C., 2004. "Pricing strategy for deteriorating items using quantity discount when demand is price sensitive," European Journal of Operational Research, Elsevier, vol. 157(2), pages 389-397, September.
    7. Ouyang, Liang-Yuh & Wu, Kun-Shan & Ho, Chia-Huei, 2004. "Integrated vendor-buyer cooperative models with stochastic demand in controllable lead time," International Journal of Production Economics, Elsevier, vol. 92(3), pages 255-266, December.
    8. B.C. Giri & S. Sharma, 2014. "Lot sizing and unequal-sized shipment policy for an integrated production-inventory system," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(5), pages 888-901, May.
    9. Rau, H. & OuYang, B.C., 2008. "An optimal batch size for integrated production-inventory policy in a supply chain," European Journal of Operational Research, Elsevier, vol. 185(2), pages 619-634, March.
    10. Wee, Hui Ming & Widyadana, Gede Agus, 2013. "Single-vendor single-buyer inventory model with discrete delivery order, random machine unavailability time and lost sales," International Journal of Production Economics, Elsevier, vol. 143(2), pages 574-579.
    11. Wang, Shaojun & Sarker, Bhaba R., 2006. "Optimal models for a multi-stage supply chain system controlled by kanban under just-in-time philosophy," European Journal of Operational Research, Elsevier, vol. 172(1), pages 179-200, July.
    12. Al-Amin Khan, Md. & Shaikh, Ali Akbar & Konstantaras, Ioannis & Bhunia, Asoke Kumar & Cárdenas-Barrón, Leopoldo Eduardo, 2020. "Inventory models for perishable items with advanced payment, linearly time-dependent holding cost and demand dependent on advertisement and selling price," International Journal of Production Economics, Elsevier, vol. 230(C).
    13. Matsui, Yoshiki, 2007. "An empirical analysis of just-in-time production in Japanese manufacturing companies," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 153-164, July.
    14. Kim, Seung-Lae & Ha, Daesung, 2003. "A JIT lot-splitting model for supply chain management: Enhancing buyer-supplier linkage," International Journal of Production Economics, Elsevier, vol. 86(1), pages 1-10, October.
    15. Yan, Changyuan & Banerjee, Avijit & Yang, Liangbin, 2011. "An integrated production-distribution model for a deteriorating inventory item," International Journal of Production Economics, Elsevier, vol. 133(1), pages 228-232, September.
    16. Mitali Sarkar & Byung Do Chung, 2020. "Flexible work-in-process production system in supply chain management under quality improvement," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 3821-3838, July.
    17. Chan, Chi Kin & Fang, Fei & Langevin, André, 2018. "Single-vendor multi-buyer supply chain coordination with stochastic demand," International Journal of Production Economics, Elsevier, vol. 206(C), pages 110-133.
    18. Melis Teksan, Z. & Geunes, Joseph, 2016. "An EOQ model with price-dependent supply and demand," International Journal of Production Economics, Elsevier, vol. 178(C), pages 22-33.
    19. Zanoni, Simone & Zavanella, Lucio, 2005. "Model and analysis of integrated production-inventory system: The case of steel production," International Journal of Production Economics, Elsevier, vol. 93(1), pages 197-205, January.
    20. AlDurgam, Mohammad & Adegbola, Kehinde & Glock, Christoph H., 2017. "A single-vendor single-manufacturer integrated inventory model with stochastic demand and variable production rate," International Journal of Production Economics, Elsevier, vol. 191(C), pages 335-350.
    21. AlDurgham, M. & Adegbola, K. & Glock, C. H., 2017. "A single-vendor single-manufacturer integrated inventory model with stochastic demand and variable production rate," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 87594, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    22. Goyal, Suresh K. & Nebebe, Fassil, 2000. "Determination of economic production-shipment policy for a single-vendor-single-buyer system," European Journal of Operational Research, Elsevier, vol. 121(1), pages 175-178, February.
    23. Sphicas, Georghios P., 2006. "EOQ and EPQ with linear and fixed backorder costs: Two cases identified and models analyzed without calculus," International Journal of Production Economics, Elsevier, vol. 100(1), pages 59-64, March.
    24. Feng, Lin & Chan, Ya-Lan & Cárdenas-Barrón, Leopoldo Eduardo, 2017. "Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date," International Journal of Production Economics, Elsevier, vol. 185(C), pages 11-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ventura, José A. & Bunn, Kevin A. & Venegas, Bárbara B. & Duan, Lisha, 2021. "A coordination mechanism for supplier selection and order quantity allocation with price-sensitive demand and finite production rates," International Journal of Production Economics, Elsevier, vol. 233(C).
    2. Asif Iqbal Malik & Biswajit Sarkar, 2020. "Coordination Supply Chain Management Under Flexible Manufacturing, Stochastic Leadtime Demand, and Mixture of Inventory," Mathematics, MDPI, vol. 8(6), pages 1-32, June.
    3. Ben-Daya, M. & Darwish, M. & Ertogral, K., 2008. "The joint economic lot sizing problem: Review and extensions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 726-742, March.
    4. Wee, Hui Ming & Widyadana, Gede Agus, 2013. "Single-vendor single-buyer inventory model with discrete delivery order, random machine unavailability time and lost sales," International Journal of Production Economics, Elsevier, vol. 143(2), pages 574-579.
    5. Glock, Christoph H., 2012. "The joint economic lot size problem: A review," International Journal of Production Economics, Elsevier, vol. 135(2), pages 671-686.
    6. Sarmah, S.P. & Acharya, D. & Goyal, S.K., 2006. "Buyer vendor coordination models in supply chain management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 1-15, November.
    7. AlDurgam, Mohammad & Adegbola, Kehinde & Glock, Christoph H., 2017. "A single-vendor single-manufacturer integrated inventory model with stochastic demand and variable production rate," International Journal of Production Economics, Elsevier, vol. 191(C), pages 335-350.
    8. Mohammed Alkahtani & Muhammad Omair & Qazi Salman Khalid & Ghulam Hussain & Imran Ahmad & Catalin Pruncu, 2021. "A COVID-19 Supply Chain Management Strategy Based on Variable Production under Uncertain Environment Conditions," IJERPH, MDPI, vol. 18(4), pages 1-23, February.
    9. Wakhid Ahmad Jauhari & I Nyoman Pujawan & Mokh Suef, 2023. "Sustainable inventory management with hybrid production system and investment to reduce defects," Annals of Operations Research, Springer, vol. 324(1), pages 543-572, May.
    10. K. F. Mary Latha & M. Ganesh Kumar & R. Uthayakumar, 2021. "Two echelon economic lot sizing problems with geometric shipment policy backorder price discount and optimal investment to reduce ordering cost," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1133-1163, December.
    11. Z X Chen & B R Sarker, 2010. "Multi-vendor integrated procurement-production system under shared transportation and just-in-time delivery system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1654-1666, November.
    12. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    13. Taleizadeh, Ata Allah & Shokr, Iman & Konstantaras, Ioannis & VafaeiNejad, Mahyar, 2020. "Stock replenishment policies for a vendor-managed inventory in a retailing system," Journal of Retailing and Consumer Services, Elsevier, vol. 55(C).
    14. Sudip Adak & G. S. Mahapatra, 2021. "Effect of inspection and rework of probabilistic defective production on two-layer supply chain incorporating deterioration and reliability dependent demand," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 565-578, June.
    15. Herbon, Avi, 2021. "An integrated manufacturer-buyer chain with bounded production cycle length," Operations Research Perspectives, Elsevier, vol. 8(C).
    16. Dipak Barman & Gour Chandra Mahata, 2022. "Two-echelon production inventory model with imperfect quality items with ordering cost reduction depending on controllable lead time," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2656-2671, October.
    17. Chan, Chi Kin & Fang, Fei & Langevin, André, 2018. "Single-vendor multi-buyer supply chain coordination with stochastic demand," International Journal of Production Economics, Elsevier, vol. 206(C), pages 110-133.
    18. Bylka, Stanislaw, 2003. "Competitive and cooperative policies for the vendor-buyer system," International Journal of Production Economics, Elsevier, vol. 81(1), pages 533-544, January.
    19. Pal, Brojeswar & Sana, Shib Sankar & Chaudhuri, Kripasindhu, 2014. "Joint pricing and ordering policy for two echelon imperfect production inventory model with two cycles," International Journal of Production Economics, Elsevier, vol. 155(C), pages 229-238.
    20. Faranak Emtehani & Nasim Nahavandi & Farimah Mokhatab Rafiei, 2021. "A joint inventory–finance model for coordinating a capital-constrained supply chain with financing limitations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-39, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:33:y:2023:i:3:p:119-139:id:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.