IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v33y2005i5p407-411.html
   My bibliography  Save this article

Proximal proper efficiency in set-valued optimization

Author

Listed:
  • Ruchi, Arora
  • Lalitha, C.S.

Abstract

In this paper, we introduce the concept of cone semilocal convex and cone semilocal convexlike set-valued maps and obtain characterization of these maps in terms of locally star-shaped sets. We derive an alternative theorem involving cone semilocal convexlike set-valued maps under the assumption of closedness of the translation of the image set of the map by the cone under consideration. We introduce proximal proper efficiency for a set-valued optimization problem in finite-dimensional spaces and obtain certain scalarization and Lagrange multiplier theorems. In the end, we consider a Lagrange form of dual and establish weak and strong duality theorems.

Suggested Citation

  • Ruchi, Arora & Lalitha, C.S., 2005. "Proximal proper efficiency in set-valued optimization," Omega, Elsevier, vol. 33(5), pages 407-411, October.
  • Handle: RePEc:eee:jomega:v:33:y:2005:i:5:p:407-411
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(04)00099-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. H. Cheng & W. T. Fu, 1999. "Strong efficiency in a locally convex space," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(3), pages 373-384, December.
    2. Wei Dong Rong & Yu Nan Wu, 1998. "Characterizations of super efficiency in cone-convexlike vector optimization with set-valued maps," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 247-258, November.
    3. Z. F. Li, 1998. "Benson Proper Efficiency in the Vector Optimization of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 623-649, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Q. Q. Song & G. Q. Tang & L. S. Wang, 2013. "On Essential Stable Sets of Solutions in Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 591-599, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Y. Xia & J. H. Qiu, 2008. "Superefficiency in Vector Optimization with Nearly Subconvexlike Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 125-137, January.
    2. Z. A. Zhou & J. W. Peng, 2012. "Scalarization of Set-Valued Optimization Problems with Generalized Cone Subconvexlikeness in Real Ordered Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 830-841, September.
    3. P. H. Sach, 2003. "Nearly Subconvexlike Set-Valued Maps and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 335-356, November.
    4. Z. A. Zhou & X. M. Yang, 2011. "Optimality Conditions of Generalized Subconvexlike Set-Valued Optimization Problems Based on the Quasi-Relative Interior," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 327-340, August.
    5. Ozdemir, Mujgan S. & Gasimov, Rafail N., 2004. "The analytic hierarchy process and multiobjective 0-1 faculty course assignment," European Journal of Operational Research, Elsevier, vol. 157(2), pages 398-408, September.
    6. D. S. Kim & G. M. Lee & P. H. Sach, 2004. "Hartley Proper Efficiency in Multifunction Optimization," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 129-145, January.
    7. Yi-Hong Xu & Zhen-Hua Peng, 2018. "Second-Order M-Composed Tangent Derivative and Its Applications," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-20, October.
    8. Y. D. Xu & S. J. Li, 2013. "Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 663-684, June.
    9. P. H. Sach, 2007. "Moreau–Rockafellar Theorems for Nonconvex Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 213-227, May.
    10. A. Taa, 2005. "ɛ-Subdifferentials of Set-valued Maps and ɛ-Weak Pareto Optimality for Multiobjective Optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 187-209, November.
    11. Zhenhua Peng & Yihong Xu, 2017. "New Second-Order Tangent Epiderivatives and Applications to Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 128-140, January.
    12. M. Chinaie & J. Zafarani, 2009. "Image Space Analysis and Scalarization of Multivalued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 451-467, September.
    13. C. Gutiérrez & L. Huerga & V. Novo & C. Tammer, 2016. "Duality related to approximate proper solutions of vector optimization problems," Journal of Global Optimization, Springer, vol. 64(1), pages 117-139, January.
    14. E. Muselli, 2000. "Upper and Lower Semicontinuity for Set-Valued Mappings Involving Constraints," Journal of Optimization Theory and Applications, Springer, vol. 106(3), pages 527-550, September.
    15. Angelo Guerraggio & Dinh The Luc, 2006. "Properly Maximal Points in Product Spaces," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 305-315, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:33:y:2005:i:5:p:407-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.