IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v62y2005i2p187-209.html
   My bibliography  Save this article

ɛ-Subdifferentials of Set-valued Maps and ɛ-Weak Pareto Optimality for Multiobjective Optimization

Author

Listed:
  • A. Taa

Abstract

In this paper we consider vector optimization problems where objective and constraints are set-valued maps. Optimality conditions in terms of Lagrange-multipliers for an ɛ-weak Pareto minimal point are established in the general case and in the case with nearly subconvexlike data. A comparison with existing results is also given. Our method used a special scalarization function, introduced in optimization by Hiriart-Urruty. Necessary and sufficient conditions for the existence of an ɛ-weak Pareto minimal point are obtained. The relation between the set of all ɛ-weak Pareto minimal points and the set of all weak Pareto minimal points is established. The ɛ-subdifferential formula of the sum of two convex functions is also extended to set-valued maps via well known results of scalar optimization. This result is applied to obtain the Karush–Kuhn–Tucker necessary conditions, for ɛ-weak Pareto minimal points Copyright Springer-Verlag 2005

Suggested Citation

  • A. Taa, 2005. "ɛ-Subdifferentials of Set-valued Maps and ɛ-Weak Pareto Optimality for Multiobjective Optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 187-209, November.
  • Handle: RePEc:spr:mathme:v:62:y:2005:i:2:p:187-209
    DOI: 10.1007/s00186-005-0007-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-005-0007-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-005-0007-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. B. Hiriart-Urruty, 1979. "Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces," Mathematics of Operations Research, INFORMS, vol. 4(1), pages 79-97, February.
    2. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    3. Z. F. Li, 1998. "Benson Proper Efficiency in the Vector Optimization of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 623-649, September.
    4. Johannes Jahn & Rüdiger Rauh, 1997. "Contingent epiderivatives and set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(2), pages 193-211, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2020. "Robustness Characterizations for Uncertain Optimization Problems via Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 459-479, August.
    2. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "First order optimality conditions in set-valued optimization," Economics and Quantitative Methods qf04010, Department of Economics, University of Insubria.
    3. Crespi Giovanni P. & Ginchev Ivan & Rocca Matteo, 2004. "First order optimality condition for constrained set-valued optimization," Economics and Quantitative Methods qf04014, Department of Economics, University of Insubria.
    4. Z. A. Zhou & J. W. Peng, 2012. "Scalarization of Set-Valued Optimization Problems with Generalized Cone Subconvexlikeness in Real Ordered Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 830-841, September.
    5. Y. D. Xu & S. J. Li, 2013. "Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 663-684, June.
    6. Nithirat Sisarat & Rabian Wangkeeree & Tamaki Tanaka, 2020. "Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps," Journal of Global Optimization, Springer, vol. 77(2), pages 273-287, June.
    7. Zhiang Zhou & Wang Chen & Xinmin Yang, 2019. "Scalarizations and Optimality of Constrained Set-Valued Optimization Using Improvement Sets and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 944-962, December.
    8. C. Gutiérrez & L. Huerga & V. Novo & C. Tammer, 2016. "Duality related to approximate proper solutions of vector optimization problems," Journal of Global Optimization, Springer, vol. 64(1), pages 117-139, January.
    9. Stevanovic Dalibor, 2016. "Common time variation of parameters in reduced-form macroeconomic models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 159-183, April.
    10. Marius Durea & Radu Strugariu & Christiane Tammer, 2013. "Scalarization in Geometric and Functional Vector Optimization Revisited," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 635-655, December.
    11. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    12. A. Fadlelmawla & M. Al-Otaibi, 2005. "Analysis of the Water Resources Status in Kuwait," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 555-570, October.
    13. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    14. Duan, Jinyun & Li, Chenwei & Xu, Yue & Wu, Chia-Huei, 2017. "Transformational leadership and employee voice behavior: a Pygmalion mechanism," LSE Research Online Documents on Economics 68035, London School of Economics and Political Science, LSE Library.
    15. Hota, Monali & Bartsch, Fabian, 2019. "Consumer socialization in childhood and adolescence: Impact of psychological development and family structure," Journal of Business Research, Elsevier, vol. 105(C), pages 11-20.
    16. Abernethy, Margaret A. & Vagnoni, Emidia, 2004. "Power, organization design and managerial behaviour," Accounting, Organizations and Society, Elsevier, vol. 29(3-4), pages 207-225.
    17. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    18. Peter Burnell, 2008. "From Evaluating Democracy Assistance to Appraising Democracy Promotion," Political Studies, Political Studies Association, vol. 56(2), pages 414-434, June.
    19. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    20. Mammassis, Constantinos S. & Kostopoulos, Konstantinos C., 2019. "CEO goal orientations, environmental dynamism and organizational ambidexterity: An investigation in SMEs," European Management Journal, Elsevier, vol. 37(5), pages 577-588.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:62:y:2005:i:2:p:187-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.