IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v48y1998i2p247-258.html
   My bibliography  Save this article

Characterizations of super efficiency in cone-convexlike vector optimization with set-valued maps

Author

Listed:
  • Wei Dong Rong
  • Yu Nan Wu

Abstract

In this paper, we extend the concept of cone-convexlikeness of single-valued maps to set-valued maps and study super efficiency in cone-convexlike vector optimization with set-valued maps. Under the assumption of the cone-convexlikeness, some characterizations of super efficiency are established in terms of the scalarization, Lagrange multipliers and super duality, respectively. Copyright Springer-Verlag Berlin Heidelberg 1998

Suggested Citation

  • Wei Dong Rong & Yu Nan Wu, 1998. "Characterizations of super efficiency in cone-convexlike vector optimization with set-valued maps," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 247-258, November.
  • Handle: RePEc:spr:mathme:v:48:y:1998:i:2:p:247-258
    DOI: 10.1007/s001860050026
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001860050026
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001860050026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Z. A. Zhou & J. W. Peng, 2012. "Scalarization of Set-Valued Optimization Problems with Generalized Cone Subconvexlikeness in Real Ordered Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 830-841, September.
    2. Ruchi, Arora & Lalitha, C.S., 2005. "Proximal proper efficiency in set-valued optimization," Omega, Elsevier, vol. 33(5), pages 407-411, October.
    3. Z. A. Zhou & X. M. Yang, 2011. "Optimality Conditions of Generalized Subconvexlike Set-Valued Optimization Problems Based on the Quasi-Relative Interior," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 327-340, August.
    4. M. Chinaie & J. Zafarani, 2009. "Image Space Analysis and Scalarization of Multivalued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 451-467, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:48:y:1998:i:2:p:247-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.