IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v142y2009i3d10.1007_s10957-009-9531-6.html
   My bibliography  Save this article

Image Space Analysis and Scalarization of Multivalued Optimization

Author

Listed:
  • M. Chinaie

    (University of Isfahan)

  • J. Zafarani

    (Sheikhbahaee University and University of Isfahan)

Abstract

Using a new method based on generalized sections of feasible sets, we obtain optimality conditions for vector optimization of objective multifunctions with multivalued constraints.

Suggested Citation

  • M. Chinaie & J. Zafarani, 2009. "Image Space Analysis and Scalarization of Multivalued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 142(3), pages 451-467, September.
  • Handle: RePEc:spr:joptap:v:142:y:2009:i:3:d:10.1007_s10957-009-9531-6
    DOI: 10.1007/s10957-009-9531-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-009-9531-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-009-9531-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joël Benoist & Nicolae Popovici, 2003. "Characterizations of convex and quasiconvex set-valued maps," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 57(3), pages 427-435, August.
    2. Wei Dong Rong & Yu Nan Wu, 1998. "Characterizations of super efficiency in cone-convexlike vector optimization with set-valued maps," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 247-258, November.
    3. X. Q. Yang, 1998. "Directional derivatives for set-valued mappings and applications," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 273-285, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiang Zhou & Wang Chen & Xinmin Yang, 2019. "Scalarizations and Optimality of Constrained Set-Valued Optimization Using Improvement Sets and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 944-962, December.
    2. Luis Rodríguez-Marín & Miguel Sama, 2013. "Scalar Lagrange Multiplier Rules for Set-Valued Problems in Infinite-Dimensional Spaces," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 683-700, March.
    3. Johannes Jahn & Truong Xuan Duc Ha, 2011. "New Order Relations in Set Optimization," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 209-236, February.
    4. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    5. Takashi Maeda, 2012. "On Optimization Problems with Set-Valued Objective Maps: Existence and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 263-279, May.
    6. Jiawei Chen & Shengjie Li & Zhongping Wan & Jen-Chih Yao, 2015. "Vector Variational-Like Inequalities with Constraints: Separation and Alternative," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 460-479, August.
    7. J. Li & N. J. Huang, 2010. "Image Space Analysis for Vector Variational Inequalities with Matrix Inequality Constraints and Applications," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 459-477, June.
    8. Liu He & Qi-Lin Wang & Ching-Feng Wen & Xiao-Yan Zhang & Xiao-Bing Li, 2019. "A Kind of New Higher-Order Mond-Weir Type Duality for Set-Valued Optimization Problems," Mathematics, MDPI, vol. 7(4), pages 1-18, April.
    9. S. J. Li & Y. D. Xu & S. K. Zhu, 2012. "Nonlinear Separation Approach to Constrained Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 842-856, September.
    10. M. Chinaie & J. Zafarani, 2013. "Image Space Analysis and Scalarization for ε-Optimization of Multifunctions," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 685-695, June.
    11. Y. D. Xu & S. J. Li, 2013. "Optimality Conditions for Generalized Ky Fan Quasi-Inequalities with Applications," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 663-684, June.
    12. Q. Q. Song & G. Q. Tang & L. S. Wang, 2013. "On Essential Stable Sets of Solutions in Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 591-599, March.
    13. J. Li & S. Q. Feng & Z. Zhang, 2013. "A Unified Approach for Constrained Extremum Problems: Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 69-92, October.
    14. A. Moldovan & L. Pellegrini, 2009. "On Regularity for Constrained Extremum Problems. Part 2: Necessary Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 165-183, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carla Antoni & Mohammed Alshahrani, 2018. "Images, Fixed Points and Vector Extremum Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 889-905, June.
    2. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    3. Davide LA TORRE & Nicolae POPOVICI & Matteo ROCCA, 2008. "Scalar characterization of explicitly quasiconvex set-valued maps," Departmental Working Papers 2008-01, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    4. Z. A. Zhou & X. M. Yang, 2011. "Optimality Conditions of Generalized Subconvexlike Set-Valued Optimization Problems Based on the Quasi-Relative Interior," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 327-340, August.
    5. M. Chinaie & J. Zafarani, 2013. "Image Space Analysis and Scalarization for ε-Optimization of Multifunctions," Journal of Optimization Theory and Applications, Springer, vol. 157(3), pages 685-695, June.
    6. A. Takeda & S. Taguchi & R. H. Tütüncü, 2008. "Adjustable Robust Optimization Models for a Nonlinear Two-Period System," Journal of Optimization Theory and Applications, Springer, vol. 136(2), pages 275-295, February.
    7. Ruchi, Arora & Lalitha, C.S., 2005. "Proximal proper efficiency in set-valued optimization," Omega, Elsevier, vol. 33(5), pages 407-411, October.
    8. Z. A. Zhou & J. W. Peng, 2012. "Scalarization of Set-Valued Optimization Problems with Generalized Cone Subconvexlikeness in Real Ordered Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 830-841, September.
    9. Giovanni P. Crespi & Daishi Kuroiwa & Matteo Rocca, 2017. "Quasiconvexity of set-valued maps assures well-posedness of robust vector optimization," Annals of Operations Research, Springer, vol. 251(1), pages 89-104, April.
    10. Zhiang Zhou & Wang Chen & Xinmin Yang, 2019. "Scalarizations and Optimality of Constrained Set-Valued Optimization Using Improvement Sets and Image Space Analysis," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 944-962, December.
    11. Y. D. Xu & S. J. Li, 2016. "On the solution continuity of parametric set optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 223-237, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:142:y:2009:i:3:d:10.1007_s10957-009-9531-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.