IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v133y2007i2d10.1007_s10957-007-9173-5.html
   My bibliography  Save this article

Moreau–Rockafellar Theorems for Nonconvex Set-Valued Maps

Author

Listed:
  • P. H. Sach

    (Institute of Mathematics)

Abstract

In this paper, we introduce the notion of (Benson) proper subgradient of a set-valued map and prove that, for some class of nonconvex set-valued maps, a proper subgradient of the sum of two set-valued maps can be expressed as the sum of two proper subgradients of these maps. This property is also established for weak subgradients. A result in Ref. [Lin, L.J.: J. Math. Anal. Appl. 186, 30–51 (1994)], obtained under some convexity assumption, is included as a special case of the corresponding result of this paper.

Suggested Citation

  • P. H. Sach, 2007. "Moreau–Rockafellar Theorems for Nonconvex Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 213-227, May.
  • Handle: RePEc:spr:joptap:v:133:y:2007:i:2:d:10.1007_s10957-007-9173-5
    DOI: 10.1007/s10957-007-9173-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9173-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9173-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Z. Li, 1999. "A Theorem of the Alternative and Its Application to the Optimization of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 100(2), pages 365-375, February.
    2. P. H. Sach, 2005. "New Generalized Convexity Notion for Set-Valued Maps and Application to Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 125(1), pages 157-179, April.
    3. X. M. Yang & D. Li & S. Y. Wang, 2001. "Near-Subconvexlikeness in Vector Optimization with Set-Valued Functions," Journal of Optimization Theory and Applications, Springer, vol. 110(2), pages 413-427, August.
    4. X. M. Yang & X. Q. Yang & G. Y. Chen, 2000. "Theorems of the Alternative and Optimization with Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 107(3), pages 627-640, December.
    5. G. Y. Chen & W. D. Rong, 1998. "Characterizations of the Benson Proper Efficiency for Nonconvex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 365-384, August.
    6. T. Illés & G. Kassay, 1999. "Theorems of the Alternative and Optimality Conditions for Convexlike and General Convexlike Programming," Journal of Optimization Theory and Applications, Springer, vol. 101(2), pages 243-257, May.
    7. Z. F. Li, 1998. "Benson Proper Efficiency in the Vector Optimization of Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 98(3), pages 623-649, September.
    8. Wen Song, 1998. "A generalization of Fenchel duality in set-valued vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 259-272, November.
    9. P. H. Sach, 2003. "Nearly Subconvexlike Set-Valued Maps and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 335-356, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Taa, 2019. "Subdifferential Calculus for Set-Valued Mappings and Optimality Conditions for Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 428-441, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. H. Sach, 2003. "Nearly Subconvexlike Set-Valued Maps and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 119(2), pages 335-356, November.
    2. D. S. Kim & G. M. Lee & P. H. Sach, 2004. "Hartley Proper Efficiency in Multifunction Optimization," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 129-145, January.
    3. Z. A. Zhou & J. W. Peng, 2012. "Scalarization of Set-Valued Optimization Problems with Generalized Cone Subconvexlikeness in Real Ordered Linear Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 830-841, September.
    4. Z. A. Zhou & X. M. Yang, 2011. "Optimality Conditions of Generalized Subconvexlike Set-Valued Optimization Problems Based on the Quasi-Relative Interior," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 327-340, August.
    5. Zhiang Zhou & Wenbin Wei & Fei Huang & Kequan Zhao, 2024. "Approximate weak efficiency of the set-valued optimization problem with variable ordering structures," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-13, October.
    6. Yi-Hong Xu & Zhen-Hua Peng, 2018. "Second-Order M-Composed Tangent Derivative and Its Applications," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-20, October.
    7. Zhenhua Peng & Yihong Xu, 2017. "New Second-Order Tangent Epiderivatives and Applications to Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 128-140, January.
    8. L. Y. Xia & J. H. Qiu, 2008. "Superefficiency in Vector Optimization with Nearly Subconvexlike Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 125-137, January.
    9. P. Q. Khanh & N. D. Tuan, 2008. "Higher-Order Variational Sets and Higher-Order Optimality Conditions for Proper Efficiency in Set-Valued Nonsmooth Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 243-261, November.
    10. P. H. Sach & D. S. Kim & L. A. Tuan & G. M. Lee, 2008. "Duality Results for Generalized Vector Variational Inequalities with Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 105-123, January.
    11. Ozdemir, Mujgan S. & Gasimov, Rafail N., 2004. "The analytic hierarchy process and multiobjective 0-1 faculty course assignment," European Journal of Operational Research, Elsevier, vol. 157(2), pages 398-408, September.
    12. C. Gutiérrez & L. Huerga & V. Novo & C. Tammer, 2016. "Duality related to approximate proper solutions of vector optimization problems," Journal of Global Optimization, Springer, vol. 64(1), pages 117-139, January.
    13. J. Li & G. Mastroeni, 2016. "Image Convexity of Generalized Systems with Infinite-Dimensional Image and Applications," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 91-115, April.
    14. Do Van Luu & Manh-Hung Nguyen, 2006. "On alternative theorems and necessary conditions for efficiency," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00112454, HAL.
    15. M. Ruiz Galán, 2016. "A sharp Lagrange multiplier theorem for nonlinear programs," Journal of Global Optimization, Springer, vol. 65(3), pages 513-530, July.
    16. Frenk, J.B.G. & Kassay, G. & Kolumban, J., 2002. "Equivalent Results in Minimax Theory," ERIM Report Series Research in Management ERS-2002-08-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Adan, M. & Novo, V., 2003. "Weak efficiency in vector optimization using a closure of algebraic type under cone-convexlikeness," European Journal of Operational Research, Elsevier, vol. 149(3), pages 641-653, September.
    18. Manh-Hung Nguyen & Do Van Luu, 2006. "On constraint qualifications with generalized convexity and optimality conditions," Post-Print halshs-00113148, HAL.
    19. Giovanni Crespi & Ivan Ginchev & Matteo Rocca, 2006. "First-order optimality conditions in set-valued optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 87-106, February.
    20. Q. S. Qiu & X. M. Yang, 2012. "Connectedness of Henig Weakly Efficient Solution Set for Set-Valued Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 439-449, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:133:y:2007:i:2:d:10.1007_s10957-007-9173-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.