Comparing backpropagation with a genetic algorithm for neural network training
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Baumol, William J & Benhabib, Jess, 1989.
"Chaos: Significance, Mechanism, and Economic Applications,"
Journal of Economic Perspectives, American Economic Association, vol. 3(1), pages 77-105, Winter.
- Baumol, William J. & Benhabib, Jess, 1987. "Chaos: Significance, Mechanism, and Economic Applications," Working Papers 87-16, C.V. Starr Center for Applied Economics, New York University.
- Sexton, Randall S. & Dorsey, Robert E. & Johnson, John D., 1999. "Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing," European Journal of Operational Research, Elsevier, vol. 114(3), pages 589-601, May.
- McClelland, John W. & Wetzstein, Michael E. & Musser, Wesley N., 1986. "Returns To Scale And Size In Agricultural Economics," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 11(2), pages 1-5, December.
- Curry, B. & Morgan, P., 1997. "Neural networks: a need for caution," Omega, Elsevier, vol. 25(1), pages 123-133, February.
- Dorsey, Robert E & Mayer, Walter J, 1995.
"Genetic Algorithms for Estimation Problems with Multiple Optima, Nondifferentiability, and Other Irregular Features,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 53-66, January.
- Michael B. Gordy, "undated". "GA.M: A Matlab routine for function maximization using a Genetic Algorithm," Matlab codes ga, , revised 12 Feb 1996.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Milica Maricic & Jose A. Egea & Veljko Jeremic, 2019. "A Hybrid Enhanced Scatter Search—Composite I-Distance Indicator (eSS-CIDI) Optimization Approach for Determining Weights Within Composite Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 497-537, July.
- Simsek, Serhat & Dag, Ali & Tiahrt, Thomas & Oztekin, Asil, 2021. "A Bayesian Belief Network-based probabilistic mechanism to determine patient no-show risk categories," Omega, Elsevier, vol. 100(C).
- Ashwini Pradhan & Debahuti Mishra & Kaberi Das & Ganapati Panda & Sachin Kumar & Mikhail Zymbler, 2021. "On the Classification of MR Images Using “ELM-SSA” Coated Hybrid Model," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
- Cinar, Didem & Kayakutlu, Gulgun & Daim, Tugrul, 2010. "Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey," Energy, Elsevier, vol. 35(4), pages 1724-1729.
- Xiaorui Shao & Chang-Soo Kim & Palash Sontakke, 2020. "Accurate Deep Model for Electricity Consumption Forecasting Using Multi-Channel and Multi-Scale Feature Fusion CNN–LSTM," Energies, MDPI, vol. 13(8), pages 1-22, April.
- Golmohammadi, Davood & Zhao, Lingyu & Dreyfus, David, 2023. "Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics," Omega, Elsevier, vol. 120(C).
- Jatinder N. D. Gupta & Randall S. Sexton & Enar A. Tunc, 2000. "Selecting Scheduling Heuristics Using Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 150-162, May.
- Curry, B. & Morgan, P. H., 2004. "Evaluating Kohonen's learning rule: An approach through genetic algorithms," European Journal of Operational Research, Elsevier, vol. 154(1), pages 191-205, April.
- B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "A tabu search algorithm for the training of neural networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 282-291, February.
- Montagno, Ray & Sexton, Randall S. & Smith, Brien N., 2002. "Using neural networks for identifying organizational improvement strategies," European Journal of Operational Research, Elsevier, vol. 142(2), pages 382-395, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pendharkar, Parag C., 2002. "A computational study on the performance of artificial neural networks under changing structural design and data distribution," European Journal of Operational Research, Elsevier, vol. 138(1), pages 155-177, April.
- Rä‚Zvan Popa, 2020. "Improving Earnings Predictions With Neural Network Models," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 26, pages 77-96, December.
- Pendharkar, Parag C., 2001. "An empirical study of design and testing of hybrid evolutionary-neural approach for classification," Omega, Elsevier, vol. 29(4), pages 361-374, August.
- Odeh, Oluwarotimi O. & Featherstone, Allen M. & Sanjoy, Das, 2006. "Predicting Credit Default in an Agricultural Bank: Methods and Issues," 2006 Annual Meeting, February 5-8, 2006, Orlando, Florida 35359, Southern Agricultural Economics Association.
- Andriosopoulos, Kostas & Nomikos, Nikos, 2014. "Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets," European Journal of Operational Research, Elsevier, vol. 234(2), pages 571-582.
- Pereira, Robert, 1999.
"Forecasting Ability But No Profitability: An Empirical Evaluation of Genetic Algorithm-optimised Technical Trading Rules,"
MPRA Paper
9055, University Library of Munich, Germany.
- Robert Pereira, 1999. "Forecasting Ability but No Profitability: an Empirical Evaluation of Genetic Algorithm-Optimized Technical Trading Rules," Working Papers 1999.06, School of Economics, La Trobe University.
- Robert Pereira, 1999. "Forecasting Ability but No Profitability: an Empirical Evaluation of Genetic Algorithm-Optimized Technical Trading Rules," Working Papers 1999.06, School of Economics, La Trobe University.
- Gomes, Orlando, 2008.
"Too much of a good thing: Endogenous business cycles generated by bounded technological progress,"
Economic Modelling, Elsevier, vol. 25(5), pages 933-945, September.
- Gomes, Orlando, 2006. "Too much of a good thing: endogenous business cycles generated by bounded technological progress," MPRA Paper 2845, University Library of Munich, Germany.
- Thompson, G. F., 1998. "Encountering economics and accounting: some skirmishes and engagements," Accounting, Organizations and Society, Elsevier, vol. 23(3), pages 283-323, April.
- Jenner, RA, 1998. "Dissipative Enterprises, Chaos, and the Principles of Lean Organizations," Omega, Elsevier, vol. 26(3), pages 397-407, June.
- Michele Boldrin, 1988. "Persistent Oscillations and Chaos in Dynamic Economic Models: Notes for a Survey," UCLA Economics Working Papers 458A, UCLA Department of Economics.
- Yu Sheng & Shiji Zhao & Katarina Nossal & Dandan Zhang, 2015.
"Productivity and farm size in Australian agriculture: reinvestigating the returns to scale,"
Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), pages 16-38, January.
- Sheng, Yu & Zhao, Shiji & Nossal, Katarina, 2011. "Productivity and farm size in Australian agriculture: reinvestigating the returns to scale," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100711, Australian Agricultural and Resource Economics Society.
- Liu, Yu-Hsin, 2011. "Incorporating scatter search and threshold accepting in finding maximum likelihood estimates for the multinomial probit model," European Journal of Operational Research, Elsevier, vol. 211(1), pages 130-138, May.
- Parente, Paulo M.D.C. & Smith, Richard J., 2011.
"Gel Methods For Nonsmooth Moment Indicators,"
Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
- Paulo Parente & Richard Smith, 2008. "GEL methods for non-smooth moment indicators," CeMMAP working papers CWP19/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Beenstock, Michael & Szpiro, George, 2002. "Specification search in nonlinear time-series models using the genetic algorithm," Journal of Economic Dynamics and Control, Elsevier, vol. 26(5), pages 811-835, May.
- Max Jerrell, 2000. "Applications Of Public Global Optimization Software To Difficult Econometric Functions," Computing in Economics and Finance 2000 161, Society for Computational Economics.
- Abayateye, F. & Skolrud, T. & Galinato, G., 2018. "Environmental Regulation Stringency and U.S. Agriculture," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277138, International Association of Agricultural Economists.
- Sexton, Randall S. & Dorsey, Robert E. & Johnson, John D., 1999. "Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing," European Journal of Operational Research, Elsevier, vol. 114(3), pages 589-601, May.
- Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).
- Albert Breton & Pierre Salmon, 2005.
"Bijural services as factors of production,"
Working Papers
hal-01544851, HAL.
- SALMON, Pierre & BRETON, Albert, 2005. "Bijural services as factors of production," LEG - Document de travail - Economie 2005-01, LEG, Laboratoire d'Economie et de Gestion, CNRS, Université de Bourgogne.
- Albert Breton & Pierre Salmon, 2006. "Bijural services as factors of production," Post-Print halshs-00143234, HAL.
- Akhmet, Marat & Akhmetova, Zhanar & Fen, Mehmet Onur, 2014. "Chaos in economic models with exogenous shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 106(C), pages 95-108.
More about this item
Keywords
Neural networks Backpropagation Genetic algorithm Empirical results;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:27:y:1999:i:6:p:679-684. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.