IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i1p274-278.html
   My bibliography  Save this article

Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks

Author

Listed:
  • Cadenas, Erasmo
  • Rivera, Wilfrido

Abstract

In this paper the short term wind speed forecasting in the region of La Venta, Oaxaca, Mexico, applying the technique of artificial neural network (ANN) to the hourly time series representative of the site is presented. The data were collected by the Comisión Federal de Electricidad (CFE) during 7 years through a network of measurement stations located in the place of interest. Diverse configurations of ANN were generated and compared through error measures, guaranteeing the performance and accuracy of the chosen models. First a model with three layers and seven neurons was chosen, according to the recommendations of diverse authors, nevertheless, the results were not sufficiently satisfactory so other three models were developed, consisting of three layers and six neurons, two layers and four neurons and two layers and three neurons. The simplest model of two layers, with two input neurons and one output neuron, was the best for the short term wind speed forecasting, with mean squared error and mean absolute error values of 0.0016 and 0.0399, respectively. The developed model for short term wind speed forecasting showed a very good accuracy to be used by the Electric Utility Control Centre in Oaxaca for the energy supply.

Suggested Citation

  • Cadenas, Erasmo & Rivera, Wilfrido, 2009. "Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks," Renewable Energy, Elsevier, vol. 34(1), pages 274-278.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:1:p:274-278
    DOI: 10.1016/j.renene.2008.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108001171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holttinen, H., 2005. "Optimal electricity market for wind power," Energy Policy, Elsevier, vol. 33(16), pages 2052-2063, November.
    2. Hwarng, H. Brian, 2001. "Insights into neural-network forecasting of time series corresponding to ARMA(p,q) structures," Omega, Elsevier, vol. 29(3), pages 273-289, June.
    3. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    4. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    5. Kalogirou, Soteris A., 2000. "Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks," Applied Energy, Elsevier, vol. 66(1), pages 63-74, May.
    6. Hill, Tim & Marquez, Leorey & O'Connor, Marcus & Remus, William, 1994. "Artificial neural network models for forecasting and decision making," International Journal of Forecasting, Elsevier, vol. 10(1), pages 5-15, June.
    7. Jaramillo, O.A. & Borja, M.A., 2004. "Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case," Renewable Energy, Elsevier, vol. 29(10), pages 1613-1630.
    8. Marcelo C. Medeiros & Carlos E. Pedreira, 2001. "What are the effects of forecasting linear time series with neural networks," Textos para discussão 446, Department of Economics PUC-Rio (Brazil).
    9. Zaiyong Tang & Paul A. Fishwick, 1993. "Feedforward Neural Nets as Models for Time Series Forecasting," INFORMS Journal on Computing, INFORMS, vol. 5(4), pages 374-385, November.
    10. Cadenas, Erasmo & Rivera, Wilfrido, 2007. "Wind speed forecasting in the South Coast of Oaxaca, México," Renewable Energy, Elsevier, vol. 32(12), pages 2116-2128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    2. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    3. Flores, Juan J. & Graff, Mario & Rodriguez, Hector, 2012. "Evolutive design of ARMA and ANN models for time series forecasting," Renewable Energy, Elsevier, vol. 44(C), pages 225-230.
    4. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    5. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    6. Niu, Tong & Wang, Jianzhou & Zhang, Kequan & Du, Pei, 2018. "Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy," Renewable Energy, Elsevier, vol. 118(C), pages 213-229.
    7. Wu, Sheng-Ju & Shiah, Sheau-Wen & Yu, Wei-Lung, 2009. "Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network," Renewable Energy, Elsevier, vol. 34(1), pages 135-144.
    8. Azadeh, A. & Ghaderi, S.F. & Anvari, M. & Saberi, M., 2007. "Performance assessment of electric power generations using an adaptive neural network algorithm," Energy Policy, Elsevier, vol. 35(6), pages 3155-3166, June.
    9. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    10. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
    11. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
    12. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    13. Kalogirou, S.A. & Mathioulakis, E. & Belessiotis, V., 2014. "Artificial neural networks for the performance prediction of large solar systems," Renewable Energy, Elsevier, vol. 63(C), pages 90-97.
    14. Lazrak, Amine & Leconte, Antoine & Chèze, David & Fraisse, Gilles & Papillon, Philippe & Souyri, Bernard, 2015. "Numerical and experimental results of a novel and generic methodology for energy performance evaluation of thermal systems using renewable energies," Applied Energy, Elsevier, vol. 158(C), pages 142-156.
    15. Cadenas, E. & Jaramillo, O.A. & Rivera, W., 2010. "Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method," Renewable Energy, Elsevier, vol. 35(5), pages 925-930.
    16. Altan Dombaycı, Ömer & Gölcü, Mustafa, 2009. "Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey," Renewable Energy, Elsevier, vol. 34(4), pages 1158-1161.
    17. Zhijian Liu & Hao Li & Xinyu Zhang & Guangya Jin & Kewei Cheng, 2015. "Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine," Energies, MDPI, vol. 8(8), pages 1-21, August.
    18. Emeksiz, Cem & Tan, Mustafa, 2022. "Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN)," Energy, Elsevier, vol. 249(C).
    19. Şencan, Arzu & Yakut, Kemal A. & Kalogirou, Soteris A., 2006. "Thermodynamic analysis of absorption systems using artificial neural network," Renewable Energy, Elsevier, vol. 31(1), pages 29-43.
    20. Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.

    More about this item

    Keywords

    Wind speed forecasting; Neural networks;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:1:p:274-278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.