IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v28y2000i6p711-723.html
   My bibliography  Save this article

Toward re-engineering models and algorithms of facility layout

Author

Listed:
  • Hassan, Mohsen M. D.

Abstract

Models and algorithms are continuously being developed for the facility layout problem in various manufacturing settings. However, there could be practices and obstacles that weaken them and adversely impact the effectiveness of the layout. Thus, they should be obliterated in order to advance the layout problem. This paper suggests a set of guidelines that are directed at the process inherent in developing layout models, algorithms, expert systems, and software applications to assist in improving them and developing better layouts. Such guidelines are lacking in the literature of facility layout. Examples on the suitability and applicability of the suggested guidelines are given.

Suggested Citation

  • Hassan, Mohsen M. D., 2000. "Toward re-engineering models and algorithms of facility layout," Omega, Elsevier, vol. 28(6), pages 711-723, December.
  • Handle: RePEc:eee:jomega:v:28:y:2000:i:6:p:711-723
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(00)00017-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zvi Drezner, 1987. "A Heuristic Procedure for the Layout of a Large Number of Facilities," Management Science, INFORMS, vol. 33(7), pages 907-915, July.
    2. Heragu, Sunderesh S. & Kusiak, Andrew, 1991. "Efficient models for the facility layout problem," European Journal of Operational Research, Elsevier, vol. 53(1), pages 1-13, July.
    3. Yavuz A. Bozer & Russell D. Meller & Steven J. Erlebacher, 1994. "An Improvement-Type Layout Algorithm for Single and Multiple-Floor Facilities," Management Science, INFORMS, vol. 40(7), pages 918-932, July.
    4. Kouvelis, P & Chiang, W-C & Kiran, AS, 1992. "A survey of layout issues in flexible manufacturing systems," Omega, Elsevier, vol. 20(3), pages 375-390, May.
    5. Matson, Jessica O. & White, John A., 1982. "Operational research and material handling," European Journal of Operational Research, Elsevier, vol. 11(4), pages 309-318, December.
    6. Selvam, R. Panneer & Balasubramanian, K. N., 1985. "Algorithmic grouping of operation sequences," Engineering Costs and Production Economics, Elsevier, vol. 9(1-3), pages 125-134, April.
    7. Meir J. Rosenblatt, 1986. "The Dynamics of Plant Layout," Management Science, INFORMS, vol. 32(1), pages 76-86, January.
    8. Kouvelis, Panagiotis & Chiang, Wen-Chyuan & Fitzsimmons, James, 1992. "Simulated annealing for machine layout problems in the presence of zoning constraints," European Journal of Operational Research, Elsevier, vol. 57(2), pages 203-223, March.
    9. Zanakis, Stelios H. & Evans, James R. & Vazacopoulos, Alkis A., 1989. "Heuristic methods and applications: A categorized survey," European Journal of Operational Research, Elsevier, vol. 43(1), pages 88-110, November.
    10. Benoit Montreuil & Uday Venkatadri, 1991. "Strategic Interpolative Design of Dynamic Manufacturing Systems Layouts," Management Science, INFORMS, vol. 37(6), pages 682-694, June.
    11. Hassan, Mohsen M. D., 1992. "Network reduction for the acyclic constrained shortest path problem," European Journal of Operational Research, Elsevier, vol. 63(1), pages 124-132, November.
    12. Sarker, Bhaba R. & Wilhelm, Wilbert E. & Hogg, Gary L. & Han, Min-Hong, 1995. "Backtracking of jobs in one-dimensional machine location problems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 593-609, September.
    13. Goetschalckx, Marc, 1992. "An interactive layout heuristic based on hexagonal adjacency graphs," European Journal of Operational Research, Elsevier, vol. 63(2), pages 304-321, December.
    14. Green, Rh & Al-Hakim, Lar, 1985. "A heuristic for facilities layout planning," Omega, Elsevier, vol. 13(5), pages 469-474.
    15. Hassan, Mohsen MD & Hogg, Gary L, 1987. "A review of graph theory application to the facilities layout problem," Omega, Elsevier, vol. 15(4), pages 291-300.
    16. Welgama, P. S. & Gibson, P. R. & Al-Hakim, L. A. R., 1994. "Facilities layout: A knowledge-based approach for converting a dual graph into a block layout," International Journal of Production Economics, Elsevier, vol. 33(1-3), pages 17-30, January.
    17. Heragu, Sunderesh S. & Alfa, Attahiru Sule, 1992. "Experimental analysis of simulated annealing based algorithms for the layout problem," European Journal of Operational Research, Elsevier, vol. 57(2), pages 190-202, March.
    18. Hassan, Mohsen M. D., 1995. "Layout design in group technology manufacturing," International Journal of Production Economics, Elsevier, vol. 38(2-3), pages 173-188, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balakrishnan, Jaydeep & Hung Cheng, Chun, 2009. "The dynamic plant layout problem: Incorporating rolling horizons and forecast uncertainty," Omega, Elsevier, vol. 37(1), pages 165-177, February.
    2. Muppani (Muppant), Venkata Reddy & Adil, Gajendra Kumar, 2008. "Efficient formation of storage classes for warehouse storage location assignment: A simulated annealing approach," Omega, Elsevier, vol. 36(4), pages 609-618, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bazargan-Lari, Massoud, 1999. "Layout designs in cellular manufacturing," European Journal of Operational Research, Elsevier, vol. 112(2), pages 258-272, January.
    2. André R. S. Amaral, 2008. "An Exact Approach to the One-Dimensional Facility Layout Problem," Operations Research, INFORMS, vol. 56(4), pages 1026-1033, August.
    3. Ravi Kumar, K. & Hadjinicola, George C. & Lin, Ting-li, 1995. "A heuristic procedure for the single-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 65-73, November.
    4. Samarghandi, Hamed & Eshghi, Kourosh, 2010. "An efficient tabu algorithm for the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 98-105, August.
    5. McKendall Jr., Alan R. & Hakobyan, Artak, 2010. "Heuristics for the dynamic facility layout problem with unequal-area departments," European Journal of Operational Research, Elsevier, vol. 201(1), pages 171-182, February.
    6. Dunker, Thomas & Radons, Gunter & Westkamper, Engelbert, 2005. "Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 165(1), pages 55-69, August.
    7. Hassan, Mohsen M. D., 1995. "Layout design in group technology manufacturing," International Journal of Production Economics, Elsevier, vol. 38(2-3), pages 173-188, March.
    8. Keller, Birgit & Buscher, Udo, 2015. "Single row layout models," European Journal of Operational Research, Elsevier, vol. 245(3), pages 629-644.
    9. Bock, Stefan & Hoberg, Kai, 2007. "Detailed layout planning for irregularly-shaped machines with transportation path design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 693-718, March.
    10. Balakrishnan, Jaydeep & Cheng, Chun Hung, 1998. "Dynamic layout algorithms: a state-of-the-art survey," Omega, Elsevier, vol. 26(4), pages 507-521, August.
    11. Ali Derakhshan Asl & Kuan Yew Wong, 2017. "Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1317-1336, August.
    12. Lee, Geun-Cheol & Kim, Yeong-Dae, 2000. "Algorithms for adjusting shapes of departments in block layouts on the grid-based plane," Omega, Elsevier, vol. 28(1), pages 111-122, February.
    13. Mariem Besbes & Marc Zolghadri & Roberta Costa Affonso & Faouzi Masmoudi & Mohamed Haddar, 2020. "A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A* search," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 615-640, March.
    14. Zhongwei Zhang & Lihui Wu & Zhaoyun Wu & Wenqiang Zhang & Shun Jia & Tao Peng, 2022. "Energy-Saving Oriented Manufacturing Workshop Facility Layout: A Solution Approach Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    15. Yifei Zhao & Stein W. Wallace, 2016. "Appraising redundancy in facility layout," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 665-679, February.
    16. Uma Kothari & Diptesh Ghosh, 2012. "A Competitive Genetic Algorithm for Single Row Facility Layout," Working Papers id:4915, eSocialSciences.
    17. Kothari, Ravi & Ghosh, Diptesh, 2013. "Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods," European Journal of Operational Research, Elsevier, vol. 224(1), pages 93-100.
    18. Stefan Helber & Daniel Böhme & Farid Oucherif & Svenja Lagershausen & Steffen Kasper, 2016. "A hierarchical facility layout planning approach for large and complex hospitals," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 5-29, June.
    19. Brusco, Michael J. & Jacobs, Larry W., 1995. "Cost analysis of alternative formulations for personnel scheduling in continuously operating organizations," European Journal of Operational Research, Elsevier, vol. 86(2), pages 249-261, October.
    20. Jerzy Grobelny & Rafał Michalski, 2020. "Effects of scatter plot initial solutions on regular grid facility layout algorithms in typical production models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 601-632, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:28:y:2000:i:6:p:711-723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.