IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v37y2009i1p165-177.html
   My bibliography  Save this article

The dynamic plant layout problem: Incorporating rolling horizons and forecast uncertainty

Author

Listed:
  • Balakrishnan, Jaydeep
  • Hung Cheng, Chun

Abstract

To the best of our knowledge, research in the dynamic plant layout problem (DPLP) assumes that the planning horizon is fixed and that material flows are known with certainty. But in practice, many companies use rolling planning horizons. Further, they have to deal with the effect of uncertainty in material flow forecasts. This paper investigates the performance of algorithms under fixed and rolling horizons, under different shifting costs and flow variability, and under forecast uncertainty. Nearly 1800 problems were run using different algorithms. The results show that algorithms that dominated under fixed horizons may not work as well under rolling horizons. Also it is difficult to identify an algorithm that performs well under all situations. Thus the development of efficient and effective heuristics might be useful in solving the rolling horizon problem. It also appears that increasing the planning horizon under rolling plans does not offer any advantage. Further forecast uncertainty may not significantly affect the performance of algorithms and in some cases may be beneficial.

Suggested Citation

  • Balakrishnan, Jaydeep & Hung Cheng, Chun, 2009. "The dynamic plant layout problem: Incorporating rolling horizons and forecast uncertainty," Omega, Elsevier, vol. 37(1), pages 165-177, February.
  • Handle: RePEc:eee:jomega:v:37:y:2009:i:1:p:165-177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(06)00151-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balakrishnan, Jaydeep & Cheng, Chun Hung, 1998. "Dynamic layout algorithms: a state-of-the-art survey," Omega, Elsevier, vol. 26(4), pages 507-521, August.
    2. Sanders, Nada R. & Manrodt, Karl B., 2003. "The efficacy of using judgmental versus quantitative forecasting methods in practice," Omega, Elsevier, vol. 31(6), pages 511-522, December.
    3. Gordon C. Armour & Elwood S. Buffa, 1963. "A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities," Management Science, INFORMS, vol. 9(2), pages 294-309, January.
    4. Kouvelis, P & Chiang, W-C & Kiran, AS, 1992. "A survey of layout issues in flexible manufacturing systems," Omega, Elsevier, vol. 20(3), pages 375-390, May.
    5. E Erel & J B Ghosh & J T Simon, 2003. "New heuristic for the dynamic layout problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1275-1282, December.
    6. Paul Kleindorfer & Howard Kunreuther, 1978. "Stochastic Horizons for the Aggregate Planning Problem," Management Science, INFORMS, vol. 24(5), pages 485-497, January.
    7. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    8. Suresh Chand & Suresh P. Sethi & Gerhard Sorger, 1992. "Forecast Horizons in the Discounted Dynamic Lot Size Model," Management Science, INFORMS, vol. 38(7), pages 1034-1048, July.
    9. Meir J. Rosenblatt, 1986. "The Dynamics of Plant Layout," Management Science, INFORMS, vol. 32(1), pages 76-86, January.
    10. Rolf A. Lundin & Thomas E. Morton, 1975. "Planning Horizons for the Dynamic Lot Size Model: Zabel vs. Protective Procedures and Computational Results," Operations Research, INFORMS, vol. 23(4), pages 711-734, August.
    11. Kimms, A, 1998. "Stability Measures for Rolling Schedules with Applications to Capacity Expansion Planning, Master Production Scheduling, and Lot Sizing," Omega, Elsevier, vol. 26(3), pages 355-366, June.
    12. Adlakha, Veena & Kowalski, Krzysztof & Vemuganti, R.R. & Lev, Benjamin, 2007. "More-for-less algorithm for fixed-charge transportation problems," Omega, Elsevier, vol. 35(1), pages 116-127, February.
    13. Hassan, Mohsen M. D., 2000. "Toward re-engineering models and algorithms of facility layout," Omega, Elsevier, vol. 28(6), pages 711-723, December.
    14. Balakrishnan, Jaydeep & Cheng, Chun Hung & Conway, Daniel G. & Lau, Chun Ming, 2003. "A hybrid genetic algorithm for the dynamic plant layout problem," International Journal of Production Economics, Elsevier, vol. 86(2), pages 107-120, November.
    15. Lin, B.M.T. & Cheng, T.C.E. & Chou, A.S.C., 2007. "Scheduling in an assembly-type production chain with batch transfer," Omega, Elsevier, vol. 35(2), pages 143-151, April.
    16. Baykasoglu, Adil & Dereli, Turkay & Sabuncu, Ibrahim, 2006. "An ant colony algorithm for solving budget constrained and unconstrained dynamic facility layout problems," Omega, Elsevier, vol. 34(4), pages 385-396, August.
    17. Sanders, NR & Ritzman, LP, 1990. "Improving short-term forecasts," Omega, Elsevier, vol. 18(4), pages 365-373.
    18. Suresh Chand & Suresh P. Sethi & Jean-Marie Proth, 1990. "Existence of Forecast Horizons in Undiscounted Discrete-Time Lot Size Models," Operations Research, INFORMS, vol. 38(5), pages 884-892, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albareda-Sambola, Maria & Fernández, Elena & Saldanha-da-Gama, Francisco, 2011. "The facility location problem with Bernoulli demands," Omega, Elsevier, vol. 39(3), pages 335-345, June.
    2. Akash Tayal & Angappa Gunasekaran & Surya Prakash Singh & Rameshwar Dubey & Thanos Papadopoulos, 2017. "Formulating and solving sustainable stochastic dynamic facility layout problem: a key to sustainable operations," Annals of Operations Research, Springer, vol. 253(1), pages 621-655, June.
    3. Salah Elaskari & Uday Venkatadri, 2022. "Understanding the Design Continuum Between Group Technology and Fractal Cell Designs for Manufacturing Systems Through the Central Backup Cellular Manufacturing System," SN Operations Research Forum, Springer, vol. 3(1), pages 1-37, March.
    4. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    5. Ge, Zehui & Hu, Qiying & Goh, Chon-Huat & Zhao, Rui, 2021. "Action-dependent commitment in vertical collaborations: The effect of demand-creating innovations in a supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    2. Milind Dawande & Srinagesh Gavirneni & Sanjeewa Naranpanawe & Suresh Sethi, 2007. "Forecast Horizons for a Class of Dynamic Lot-Size Problems Under Discrete Future Demand," Operations Research, INFORMS, vol. 55(4), pages 688-702, August.
    3. Fuying Jing & Zirui Lan, 2017. "Forecast horizon of multi-item dynamic lot size model with perishable inventory," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-15, November.
    4. Balakrishnan, Jaydeep & Cheng, Chun Hung, 2006. "A note on "a hybrid genetic algorithm for the dynamic plant layout problem"," International Journal of Production Economics, Elsevier, vol. 103(1), pages 87-89, September.
    5. Yu-Hsin Chen, Gary, 2013. "A new data structure of solution representation in hybrid ant colony optimization for large dynamic facility layout problems," International Journal of Production Economics, Elsevier, vol. 142(2), pages 362-371.
    6. Gintaras Palubeckis & Armantas Ostreika & Jūratė Platužienė, 2022. "A Variable Neighborhood Search Approach for the Dynamic Single Row Facility Layout Problem," Mathematics, MDPI, vol. 10(13), pages 1-27, June.
    7. Kimms, Alf, 1996. "Stability measures for rolling schedules with applications to capacity expansion planning, master production scheduling, and lot sizing," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 418, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. Archis Ghate & Robert L. Smith, 2009. "Optimal Backlogging Over an Infinite Horizon Under Time-Varying Convex Production and Inventory Costs," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 362-368, June.
    9. Awi Federgruen & Michal Tzur, 1996. "Detection of minimal forecast horizons in dynamic programs with multiple indicators of the future," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 169-189, March.
    10. Xie, Yue & Zhou, Shenghan & Xiao, Yiyong & Kulturel-Konak, Sadan & Konak, Abdullah, 2018. "A β-accurate linearization method of Euclidean distance for the facility layout problem with heterogeneous distance metrics," European Journal of Operational Research, Elsevier, vol. 265(1), pages 26-38.
    11. Balakrishnan, Jaydeep & Cheng, Chun Hung & Conway, Daniel G. & Lau, Chun Ming, 2003. "A hybrid genetic algorithm for the dynamic plant layout problem," International Journal of Production Economics, Elsevier, vol. 86(2), pages 107-120, November.
    12. G. Rius-Sorolla & J. Maheut & S. Estellés-Miguel & J. P. García-Sabater, 2021. "Operations planning test bed under rolling horizons, multiproduct, multiechelon, multiprocess for capacitated production planning modelling with strokes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1289-1315, December.
    13. Milind Dawande & Srinagesh Gavirneni & Yinping Mu & Suresh Sethi & Chelliah Sriskandarajah, 2010. "On the Interaction Between Demand Substitution and Production Changeovers," Manufacturing & Service Operations Management, INFORMS, vol. 12(4), pages 682-691, September.
    14. Dawande, Milind & Gavirneni, Srinagesh & Naranpanawe, Sanjeewa & Sethi, Suresh P., 2009. "Discrete forecast horizons for two-product variants of the dynamic lot-size problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 430-436, August.
    15. Lodi, Andrea & Vigo, Daniele & Zannoni, Cinzia, 2000. "Exact and heuristic algorithms for data sets reconstruction," European Journal of Operational Research, Elsevier, vol. 124(1), pages 139-150, July.
    16. Bylka, S.Stanislaw & Rempala, Ryszarda, 2004. "Heuristics for impulse replenishment with continuous periodic demand," International Journal of Production Economics, Elsevier, vol. 88(2), pages 183-190, March.
    17. Robert L. Smith & Rachel Q. Zhang, 1998. "Infinite Horizon Production Planning in Time-Varying Systems with Convex Production and Inventory Costs," Management Science, INFORMS, vol. 44(9), pages 1313-1320, September.
    18. Zhaotong Lian & Liming Liu & Stuart X. Zhu, 2010. "Rolling‐horizon replenishment: Policies and performance analysis," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 489-502, September.
    19. Liu, Jingfa & Wang, Dawen & He, Kun & Xue, Yu, 2017. "Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1052-1063.
    20. Saif Benjaafar & Sunderesh S. Heragu & Shahrukh A. Irani, 2002. "Next Generation Factory Layouts: Research Challenges and Recent Progress," Interfaces, INFORMS, vol. 32(6), pages 58-76, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:37:y:2009:i:1:p:165-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.