IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v25y1997i6p715-727.html
   My bibliography  Save this article

A learning vector quantization neural network model for the classification of industrial construction projects

Author

Listed:
  • Gupta, V. K.
  • Chen, J. G.
  • Murtaza, M. B.

Abstract

In several key functional areas of contemporary engineering and management science, neural networks have steadily been gaining recognition as robust and reliable tools for classification problems. This paper describes a new application of the learning vector quantization neural network: the classification of the degree of modularization appropriate for the construction of an industrial facility. This neural network uses variables related to plant location, labor issues, organizational issues, plant characteristics, project risks, and environmental issues as inputs to perform the classification. The neural network training and performance evaluation is also discussed.

Suggested Citation

  • Gupta, V. K. & Chen, J. G. & Murtaza, M. B., 1997. "A learning vector quantization neural network model for the classification of industrial construction projects," Omega, Elsevier, vol. 25(6), pages 715-727, December.
  • Handle: RePEc:eee:jomega:v:25:y:1997:i:6:p:715-727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(97)00025-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, S. K. & Mangiameli, P. & West, D., 1995. "The comparative ability of self-organizing neural networks to define cluster structure," Omega, Elsevier, vol. 23(3), pages 271-279, June.
    2. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    3. Vipul K. Gupta & Deborah J. Fisher & Mirza B. Murtaza, 1996. "A Consortium Sponsored Knowledge-Based System for Managerial Decision Making in Industrial Construction," Interfaces, INFORMS, vol. 26(6), pages 9-23, December.
    4. Chiang, W. -C. & Urban, T. L. & Baldridge, G. W., 1996. "A neural network approach to mutual fund net asset value forecasting," Omega, Elsevier, vol. 24(2), pages 205-215, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klein, B. D. & Rossin, D. F., 1999. "Data quality in neural network models: effect of error rate and magnitude of error on predictive accuracy," Omega, Elsevier, vol. 27(5), pages 569-582, October.
    2. Gruca, TS & Klemz, BR, 1998. "Using Neural Networks to Identify Competitive Market Structures from Aggregate Market Response Data," Omega, Elsevier, vol. 26(1), pages 49-62, February.
    3. Adam Fadlalla & Chien-Hua Lin, 2001. "An Analysis of the Applications of Neural Networks in Finance," Interfaces, INFORMS, vol. 31(4), pages 112-122, August.
    4. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    5. James R. Coakley & Carol E. Brown, 2000. "Artificial neural networks in accounting and finance: modeling issues," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(2), pages 119-144, June.
    6. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    7. Palocsay, Susan W. & Stevens, Scott P. & Brookshire, Robert G. & Sacco, William J. & Copes, Wayne S. & Buckman, Robert F. & Smith, J. Stanley, 1996. "Using neural networks for trauma outcome evaluation," European Journal of Operational Research, Elsevier, vol. 93(2), pages 369-386, September.
    8. Yu-Shan Chen & Ke-Chiun Chang, 2009. "Using neural network to analyze the influence of the patent performance upon the market value of the US pharmaceutical companies," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(3), pages 637-655, September.
    9. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    10. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    11. J.E. Boritz & D.B. Kennedy & Augusto de Miranda e Albuquerque, 1995. "Predicting Corporate Failure Using a Neural Network Approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 4(2), pages 95-111, June.
    12. Wolfgang Karl Härdle & Dedy Dwi Prastyo, 2013. "Default Risk Calculation based on Predictor Selection for the Southeast Asian Industry," SFB 649 Discussion Papers SFB649DP2013-037, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    13. Mark T. Leung & An-Sing Chen, 2005. "Performance evaluation of neural network architectures: the case of predicting foreign exchange correlations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 403-420.
    14. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
    15. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
    16. Jones, Stewart & Johnstone, David & Wilson, Roy, 2015. "An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 72-85.
    17. Laura Fabregat-Aibar & Maria-Teresa Sorrosal-Forradellas & Glòria Barberà-Mariné & Antonio Terceño, 2021. "Can Artificial Neural Networks Predict the Survival Capacity of Mutual Funds? Evidence from Spain," Mathematics, MDPI, vol. 9(6), pages 1-10, March.
    18. Callen, Jeffrey L. & Kwan, Clarence C. Y. & Yip, Patrick C. Y. & Yuan, Yufei, 1996. "Neural network forecasting of quarterly accounting earnings," International Journal of Forecasting, Elsevier, vol. 12(4), pages 475-482, December.
    19. Kattan, Michael W. & Cooper, Randolph B., 2000. "A simulation of factors affecting machine learning techniques: an examination of partitioning and class proportions," Omega, Elsevier, vol. 28(5), pages 501-512, October.
    20. Mishra, Sasmita & Padhy, Sudarsan & Mishra, Satya Narayan & Misra, Satya Narayan, 2021. "A novel LASSO – TLBO – SVR hybrid model for an efficient portfolio construction," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:25:y:1997:i:6:p:715-727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.