IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v118y2023ics0305048323000336.html
   My bibliography  Save this article

An active preference learning approach to aid the selection of validators in blockchain environments

Author

Listed:
  • Gehrlein, Jonas
  • Miebs, Grzegorz
  • Brunelli, Matteo
  • Kadziński, Miłosz

Abstract

We consider a real-world problem faced in some blockchain ecosystems that select their active validators—the actors that maintain the blockchain—from a larger set of candidates through an election-based mechanism. Specifically, we focus on Polkadot, a protocol that aggregates preference lists from another set of actors, nominators, that contain a limited number of trusted validators and thereby influence the election’s outcome. This process is financially incentivized but often overwhelms human decision makers due to the problem’s complexity and the multitude of available alternatives. This paper presents a decision support system (DSS) to help the nominators choose the validators in an environment with frequently changing data. The system structures the relevant multiple attribute problem and incorporates a dedicated active learning algorithm. Its goal is to find a sufficiently small set of pairwise elicitation questions to infer nominators’ preferences. We test the proposed solution in an experiment with 115 real nominators from the Polkadot ecosystem. The empirical results confirm that our approach outperforms the unaided process in terms of required interaction time, imposed cognitive effort, and offered efficacy. The developed DSS can be easily extended to other blockchain ecosystems.

Suggested Citation

  • Gehrlein, Jonas & Miebs, Grzegorz & Brunelli, Matteo & Kadziński, Miłosz, 2023. "An active preference learning approach to aid the selection of validators in blockchain environments," Omega, Elsevier, vol. 118(C).
  • Handle: RePEc:eee:jomega:v:118:y:2023:i:c:s0305048323000336
    DOI: 10.1016/j.omega.2023.102869
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048323000336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2023.102869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models," Omega, Elsevier, vol. 71(C), pages 27-45.
    2. Jacquet-Lagreze, E. & Siskos, J., 1982. "Assessing a set of additive utility functions for multicriteria decision-making, the UTA method," European Journal of Operational Research, Elsevier, vol. 10(2), pages 151-164, June.
    3. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    4. Sundarakani, Balan & Ajaykumar, Aneesh & Gunasekaran, Angappa, 2021. "Big data driven supply chain design and applications for blockchain: An action research using case study approach," Omega, Elsevier, vol. 102(C).
    5. Nikolaos F. Matsatsinis & Evangelos Grigoroudis & Eleftherios Siskos, 2018. "Disaggregation Approach to Value Elicitation," International Series in Operations Research & Management Science, in: Luis C. Dias & Alec Morton & John Quigley (ed.), Elicitation, chapter 0, pages 313-348, Springer.
    6. Kadziński, Miłosz & Cinelli, Marco & Ciomek, Krzysztof & Coles, Stuart R. & Nadagouda, Mallikarjuna N. & Varma, Rajender S. & Kirwan, Kerry, 2018. "Co-constructive development of a green chemistry-based model for the assessment of nanoparticles synthesis," European Journal of Operational Research, Elsevier, vol. 264(2), pages 472-490.
    7. Mahmud, Hasan & Islam, A.K.M. Najmul & Ahmed, Syed Ishtiaque & Smolander, Kari, 2022. "What influences algorithmic decision-making? A systematic literature review on algorithm aversion," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    8. Vetschera, Rudolf & Weitzl, Wolfgang & Wolfsteiner, Elisabeth, 2014. "Implausible alternatives in eliciting multi-attribute value functions," European Journal of Operational Research, Elsevier, vol. 234(1), pages 221-230.
    9. Jacquet-Lagreze, Eric & Siskos, Yannis, 2001. "Preference disaggregation: 20 years of MCDA experience," European Journal of Operational Research, Elsevier, vol. 130(2), pages 233-245, April.
    10. Mastorakis, Kostis & Siskos, Eleftherios, 2016. "Value focused pharmaceutical strategy determination with multicriteria decision analysis techniques," Omega, Elsevier, vol. 59(PA), pages 84-96.
    11. Berkeley J. Dietvorst & Joseph P. Simmons & Cade Massey, 2018. "Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even Slightly) Modify Them," Management Science, INFORMS, vol. 64(3), pages 1155-1170, March.
    12. Daniel Zizzo, 2010. "Experimenter demand effects in economic experiments," Experimental Economics, Springer;Economic Science Association, vol. 13(1), pages 75-98, March.
    13. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    14. Ghaderi, Mohammad & Ruiz, Francisco & Agell, Núria, 2017. "A linear programming approach for learning non-monotonic additive value functions in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1073-1084.
    15. James E. Smith & James S. Dyer, 2021. "On (Measurable) Multiattribute Value Functions: An Expository Argument," Decision Analysis, INFORMS, vol. 18(4), pages 247-256, December.
    16. Ralph L. Keeney & Robin S. Gregory, 2005. "Selecting Attributes to Measure the Achievement of Objectives," Operations Research, INFORMS, vol. 53(1), pages 1-11, February.
    17. Fahad Saleh & Wei Jiang, 2021. "Blockchain without Waste: Proof-of-Stake [Proof of Work vs Proof of Stake]," The Review of Financial Studies, Society for Financial Studies, vol. 34(3), pages 1156-1190.
    18. Tervonen, Tommi & van Valkenhoef, Gert & Baştürk, Nalan & Postmus, Douwe, 2013. "Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 224(3), pages 552-559.
    19. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    2. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 693-707.
    3. Dias, Luis C. & Dias, Joana & Ventura, Tiago & Rocha, Humberto & Ferreira, Brígida & Khouri, Leila & Lopes, Maria do Carmo, 2022. "Learning target-based preferences through additive models: An application in radiotherapy treatment planning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 270-279.
    4. Luis C. Dias & Gabriela D. Oliveira & Paula Sarabando, 2021. "Choice-based preference disaggregation concerning vehicle technologies," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 177-200, March.
    5. Zheng, Jun & Lienert, Judit, 2018. "Stakeholder interviews with two MAVT preference elicitation philosophies in a Swiss water infrastructure decision: Aggregation using SWING-weighting and disaggregation using UTAGMS," European Journal of Operational Research, Elsevier, vol. 267(1), pages 273-287.
    6. Wachowicz, Tomasz & Roszkowska, Ewa, 2022. "Can holistic declaration of preferences improve a negotiation offer scoring system?," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1018-1032.
    7. Guo, Mengzhuo & Zhang, Qingpeng & Liao, Xiuwu & Chen, Frank Youhua & Zeng, Daniel Dajun, 2021. "A hybrid machine learning framework for analyzing human decision-making through learning preferences," Omega, Elsevier, vol. 101(C).
    8. Liu, Jiapeng & Liao, Xiuwu & Kadziński, Miłosz & Słowiński, Roman, 2019. "Preference disaggregation within the regularization framework for sorting problems with multiple potentially non-monotonic criteria," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1071-1089.
    9. Brunelli, Matteo & Corrente, Salvatore, 2024. "Modeling criteria and project interactions in portfolio decision analysis with the Choquet integral," Omega, Elsevier, vol. 126(C).
    10. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2023. "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences," European Journal of Operational Research, Elsevier, vol. 311(2), pages 596-616.
    11. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models," Omega, Elsevier, vol. 71(C), pages 27-45.
    12. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    13. Vetschera, Rudolf, 2017. "Deriving rankings from incomplete preference information: A comparison of different approaches," European Journal of Operational Research, Elsevier, vol. 258(1), pages 244-253.
    14. Kadziński, Miłosz & Ciomek, Krzysztof, 2021. "Active learning strategies for interactive elicitation of assignment examples for threshold-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 293(2), pages 658-680.
    15. Guo, Mengzhuo & Liao, Xiuwu & Liu, Jiapeng & Zhang, Qingpeng, 2020. "Consumer preference analysis: A data-driven multiple criteria approach integrating online information," Omega, Elsevier, vol. 96(C).
    16. Ghaderi, Mohammad & Kadziński, Miłosz, 2021. "Incorporating uncovered structural patterns in value functions construction," Omega, Elsevier, vol. 99(C).
    17. Ciomek, Krzysztof & Ferretti, Valentina & Kadzinski, Milosz, 2018. "Predictive analytics and disused railways requalification: insights from a Post Factum Analysis perspective," LSE Research Online Documents on Economics 85922, London School of Economics and Political Science, LSE Library.
    18. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2024. "Inducing a probability distribution in Stochastic Multicriteria Acceptability Analysis," Omega, Elsevier, vol. 123(C).
    19. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    20. Doumpos, Michael & Zopounidis, Constantin & Galariotis, Emilios, 2014. "Inferring robust decision models in multicriteria classification problems: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 236(2), pages 601-611.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:118:y:2023:i:c:s0305048323000336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.