IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v131y2025ics030504832400183x.html
   My bibliography  Save this article

Integrating machine learning models to learn potentially non-monotonic preferences for multi-criteria sorting from large-scale assignment examples

Author

Listed:
  • Li, Zhuolin
  • Zhang, Zhen
  • Pedrycz, Witold

Abstract

Learning preferences from assignment examples has attracted considerable attention in the field of multi-criteria sorting (MCS). However, traditional MCS methods, designed to infer decision makers’ preferences from small-scale assignment examples, encounter limitations when confronted with large-scale data sets. Additionally, the presence of decision makers’ non-monotonic preferences for certain criteria in MCS problems necessitates accounting for potential non-monotonicity when devising preference learning methods. To address this, this paper proposes some new models to learn potentially non-monotonic preferences for MCS problems from large-scale assignment examples by leveraging machine learning models. Specifically, we first introduce the Piecewise-Linear Neural Network (PLNN) model, which leverages the threshold-based value-driven sorting procedure as the underlying sorting model and integrates a perceptron-based model to establish piecewise-linear marginal value functions to approximate real ones. On this basis, we address MCS problems with criteria interactions and extend the PLNN model to develop the Piecewise-Linear Factorization Machine-based Neural Network (PLFMNN) model by incorporating the factorization machine to factorize interaction coefficients. Training these models allows us to learn potentially non-monotonic preferences of decision makers. To illustrate the proposed models, we apply them to a red wine quality classification problem. Furthermore, we assess the performance of the proposed models through computational experiments on both artificial and real-world data sets. Additionally, we conduct statistical tests to ascertain the significance of the performance differences. Experimental results reveal that the proposed models are comparable to the multilayer perceptron model and outperform other baseline models on most data sets, thus affirming their efficacy. Finally, we conduct some sensitivity analysis to assess the impact of certain parameters on the performance of the proposed models and compare them with existing studies from a theoretical perspective, further demonstrating their effectiveness.

Suggested Citation

  • Li, Zhuolin & Zhang, Zhen & Pedrycz, Witold, 2025. "Integrating machine learning models to learn potentially non-monotonic preferences for multi-criteria sorting from large-scale assignment examples," Omega, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:jomega:v:131:y:2025:i:c:s030504832400183x
    DOI: 10.1016/j.omega.2024.103219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030504832400183X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:131:y:2025:i:c:s030504832400183x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.