IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v258y2017i1p244-253.html
   My bibliography  Save this article

Deriving rankings from incomplete preference information: A comparison of different approaches

Author

Listed:
  • Vetschera, Rudolf

Abstract

Volume-based methods for decision making under incomplete information like the SMAA family of methods provide rich probabilistic information to support decision making. However, they usually do not directly generate a unique ranking of alternatives. Methods to create such a unique ranking from incomplete preference information typically select one parameter vector, either by mathematical programming approaches or by averaging, and then apply a preference model using this parameter vector. In the present paper, we develop several models to infer a complete ranking or a complete preorder of alternatives directly from the probabilistic information provided by volume-based methods without singling out a specific parameter vector. We compare the results obtained by these models to those obtained with a single parameter approach in a computational study. Results indicate small, but significant differences in the performance of methods, as well as in the probability that additional preference information might worsen, rather than improve, the results.

Suggested Citation

  • Vetschera, Rudolf, 2017. "Deriving rankings from incomplete preference information: A comparison of different approaches," European Journal of Operational Research, Elsevier, vol. 258(1), pages 244-253.
  • Handle: RePEc:eee:ejores:v:258:y:2017:i:1:p:244-253
    DOI: 10.1016/j.ejor.2016.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716306701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bous, Géraldine & Fortemps, Philippe & Glineur, François & Pirlot, Marc, 2010. "ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements," European Journal of Operational Research, Elsevier, vol. 206(2), pages 435-444, October.
    2. Jacquet-Lagreze, E. & Siskos, J., 1982. "Assessing a set of additive utility functions for multicriteria decision-making, the UTA method," European Journal of Operational Research, Elsevier, vol. 10(2), pages 151-164, June.
    3. Craig W. Kirkwood & Rakesh K. Sarin, 1985. "Ranking with Partial Information: A Method and an Application," Operations Research, INFORMS, vol. 33(1), pages 38-48, February.
    4. Tervonen, Tommi & Lahdelma, Risto, 2007. "Implementing stochastic multicriteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 178(2), pages 500-513, April.
    5. Rubinstein, R. Y., 1982. "Generating random vectors uniformly distributed inside and on the surface of different regions," European Journal of Operational Research, Elsevier, vol. 10(2), pages 205-209, June.
    6. Gordon B. Hazen, 1986. "Partial Information, Dominance, and Potential Optimality in Multiattribute Utility Theory," Operations Research, INFORMS, vol. 34(2), pages 296-310, April.
    7. Lahdelma, Risto & Hokkanen, Joonas & Salminen, Pekka, 1998. "SMAA - Stochastic multiobjective acceptability analysis," European Journal of Operational Research, Elsevier, vol. 106(1), pages 137-143, April.
    8. Weber, Martin, 1987. "Decision making with incomplete information," European Journal of Operational Research, Elsevier, vol. 28(1), pages 44-57, January.
    9. Kadziński, Miłosz & Tervonen, Tommi, 2013. "Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements," European Journal of Operational Research, Elsevier, vol. 228(1), pages 169-180.
    10. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2008. "Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 191(2), pages 416-436, December.
    11. Kadziński, Miłosz & Greco, Salvatore & Słowiński, Roman, 2012. "Selection of a representative value function in robust multiple criteria ranking and choice," European Journal of Operational Research, Elsevier, vol. 217(3), pages 541-553.
    12. V. Srinivasan & Allan Shocker, 1973. "Estimating the weights for multiple attributes in a composite criterion using pairwise judgments," Psychometrika, Springer;The Psychometric Society, vol. 38(4), pages 473-493, December.
    13. van Valkenhoef, Gert & Tervonen, Tommi & Postmus, Douwe, 2014. "Notes on ‘Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis’," European Journal of Operational Research, Elsevier, vol. 239(3), pages 865-867.
    14. Christoph Graf & Magdalena Six, 2014. "The effect of information on the quality of decisions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 647-662, December.
    15. Beuthe, Michel & Scannella, Giuseppe, 2001. "Comparative analysis of UTA multicriteria methods," European Journal of Operational Research, Elsevier, vol. 130(2), pages 246-262, April.
    16. Vetschera, Rudolf, 2009. "Learning about preferences in electronic negotiations - A volume-based measurement method," European Journal of Operational Research, Elsevier, vol. 194(2), pages 452-463, April.
    17. Tervonen, Tommi & van Valkenhoef, Gert & Baştürk, Nalan & Postmus, Douwe, 2013. "Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 224(3), pages 552-559.
    18. Eiselt, H. A. & Laporte, Gilbert, 1992. "The use of domains in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 61(3), pages 292-298, September.
    19. Risto Lahdelma & Pekka Salminen, 2001. "SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making," Operations Research, INFORMS, vol. 49(3), pages 444-454, June.
    20. Sam Park, Kyung & Sang Lee, Kyung & Seong Eum, Yun & Park, Kwangtae, 2001. "Extended methods for identifying dominance and potential optimality in multi-criteria analysis with imprecise information," European Journal of Operational Research, Elsevier, vol. 134(3), pages 557-563, November.
    21. Christoph Graf & Rudolf Vetschera & Yingchao Zhang, 2013. "Parameters of social preference functions: measurement and external validity," Theory and Decision, Springer, vol. 74(3), pages 357-382, March.
    22. Jacquet-Lagreze, Eric & Siskos, Yannis, 2001. "Preference disaggregation: 20 years of MCDA experience," European Journal of Operational Research, Elsevier, vol. 130(2), pages 233-245, April.
    23. L C Dias & J N Clímaco, 2000. "Additive aggregation with variable interdependent parameters: the VIP analysis software," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(9), pages 1070-1082, September.
    24. Salo, Ahti A. & Hamalainen, Raimo P., 1995. "Preference programming through approximate ratio comparisons," European Journal of Operational Research, Elsevier, vol. 82(3), pages 458-475, May.
    25. Park, Kyung Sam & Kim, Soung Hie, 1997. "Tools for interactive multiattribute decisionmaking with incompletely identified information," European Journal of Operational Research, Elsevier, vol. 98(1), pages 111-123, April.
    26. Kmietowicz, ZW & Pearman, AD, 1984. "Decision theory, linear partial information and statistical dominance," Omega, Elsevier, vol. 12(4), pages 391-399.
    27. van Valkenhoef, Gert & Tervonen, Tommi, 2016. "Entropy-optimal weight constraint elicitation with additive multi-attribute utility models," Omega, Elsevier, vol. 64(C), pages 1-12.
    28. Roy, Bernard, 1993. "Decision science or decision-aid science?," European Journal of Operational Research, Elsevier, vol. 66(2), pages 184-203, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyi Zhou & Yong Hu & Yong Deng & Felix T. S. Chan & Alessio Ishizaka, 2018. "A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP," Annals of Operations Research, Springer, vol. 271(2), pages 1045-1066, December.
    2. Dias, Luis C. & Vetschera, Rudolf, 2019. "On generating utility functions in Stochastic Multicriteria Acceptability Analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 672-685.
    3. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    4. Ghaderi, Mohammad & Kadziński, Miłosz, 2021. "Incorporating uncovered structural patterns in value functions construction," Omega, Elsevier, vol. 99(C).
    5. Pelissari, Renata & José Abackerli, Alvaro & Ben Amor, Sarah & Célia Oliveira, Maria & Infante, Kleber Manoel, 2021. "Multiple criteria hierarchy process for sorting problems under uncertainty applied to the evaluation of the operational maturity of research institutions," Omega, Elsevier, vol. 103(C).
    6. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    7. Ding, Jiankun & Han, Deqiang & Yang, Yi, 2018. "Iterative ranking aggregation using quality improvement of subgroup ranking," European Journal of Operational Research, Elsevier, vol. 268(2), pages 596-612.
    8. Giuseppe Pinto & Elnaz Abdollahi & Alfonso Capozzoli & Laura Savoldi & Risto Lahdelma, 2019. "Optimization and Multicriteria Evaluation of Carbon-neutral Technologies for District Heating," Energies, MDPI, vol. 12(9), pages 1-19, April.
    9. Jindong Qin & Yingying Liang & Luis Martinez & Alessio Ishizaka & Witold Pedrycz, 2023. "ORESTE-SORT: a novel multiple criteria sorting method for sorting port group competitiveness," Annals of Operations Research, Springer, vol. 325(2), pages 875-909, June.
    10. Costa, Ana Sara & Corrente, Salvatore & Greco, Salvatore & Figueira, José Rui & Borbinha, José, 2020. "A robust hierarchical nominal multicriteria classification method based on similarity and dissimilarity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 986-1001.
    11. Pelissari, Renata & Oliveira, Maria Célia & Ben Amor, Sarah & Abackerli, Alvaro José, 2019. "A new FlowSort-based method to deal with information imperfections in sorting decision-making problems," European Journal of Operational Research, Elsevier, vol. 276(1), pages 235-246.
    12. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 693-707.
    2. Vetschera, Rudolf & Chen, Ye & Hipel, Keith W. & Marc Kilgour, D., 2010. "Robustness and information levels in case-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 202(3), pages 841-852, May.
    3. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    4. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    5. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    6. Kim, Soung Hie & Han, Chang Hee, 2000. "Establishing dominance between alternatives with incomplete information in a hierarchically structured attribute tree," European Journal of Operational Research, Elsevier, vol. 122(1), pages 79-90, April.
    7. Antti Punkka & Ahti Salo, 2014. "Scale Dependence and Ranking Intervals in Additive Value Models Under Incomplete Preference Information," Decision Analysis, INFORMS, vol. 11(2), pages 83-104, June.
    8. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    9. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models," Omega, Elsevier, vol. 71(C), pages 27-45.
    10. Kadziński, Miłosz & Tervonen, Tommi, 2013. "Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements," European Journal of Operational Research, Elsevier, vol. 228(1), pages 169-180.
    11. Christoph Graf & Magdalena Six, 2014. "The effect of information on the quality of decisions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 647-662, December.
    12. Zheng, Jun & Lienert, Judit, 2018. "Stakeholder interviews with two MAVT preference elicitation philosophies in a Swiss water infrastructure decision: Aggregation using SWING-weighting and disaggregation using UTAGMS," European Journal of Operational Research, Elsevier, vol. 267(1), pages 273-287.
    13. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    14. Luis V. Montiel & J. Eric Bickel, 2014. "A Generalized Sampling Approach for Multilinear Utility Functions Given Partial Preference Information," Decision Analysis, INFORMS, vol. 11(3), pages 147-170, September.
    15. Hurson, Christian & Siskos, Yannis, 2014. "A synergy of multicriteria techniques to assess additive value models," European Journal of Operational Research, Elsevier, vol. 238(2), pages 540-551.
    16. Liesio, Juuso & Mild, Pekka & Salo, Ahti, 2007. "Preference programming for robust portfolio modeling and project selection," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1488-1505, September.
    17. van Valkenhoef, Gert & Tervonen, Tommi, 2016. "Entropy-optimal weight constraint elicitation with additive multi-attribute utility models," Omega, Elsevier, vol. 64(C), pages 1-12.
    18. Salvatore Corrente & Salvatore Greco & Roman Słowiński, 2017. "Handling imprecise evaluations in multiple criteria decision aiding and robust ordinal regression by n-point intervals," Fuzzy Optimization and Decision Making, Springer, vol. 16(2), pages 127-157, June.
    19. Kadziński, Miłosz & Ciomek, Krzysztof, 2021. "Active learning strategies for interactive elicitation of assignment examples for threshold-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 293(2), pages 658-680.
    20. Christoph Graf & Rudolf Vetschera & Yingchao Zhang, 2013. "Parameters of social preference functions: measurement and external validity," Theory and Decision, Springer, vol. 74(3), pages 357-382, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:258:y:2017:i:1:p:244-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.