IDEAS home Printed from https://ideas.repec.org/p/zur/iewwpx/245.html
   My bibliography  Save this paper

Control of Generalized Error Rates in Multiple Testing

Author

Listed:
  • Joseph P. Romano
  • Michael Wolf

Abstract

Consider the problem of testing s hypotheses simultaneously. The usual approach to dealing with the multiplicity problem is to restrict attention to procedures that control the probability of even one false rejection, the familiar familywise error rate (FWER). In many applications, particularly if s is large, one might be willing to tolerate more than one false rejection if the number of such cases is controlled, thereby increasing the ability of the procedure to reject false null hypotheses One possibility is to replace control of the FWER by control of the probability of k or more false rejections, which is called the k-FWER. We derive both single-step and stepdown procedures that control the k-FWER in finite samples or asymptotically, depending on the situation. Lehmann and Romano (2005a) derive some exact methods for this purpose, which apply whenever p-values are available for individual tests; no assumptions are made on the joint dependence of the p-values. In contrast, we construct methods that implicitly take into account the dependence structure of the individual test statistics in order to further increase the ability to detect false null hypotheses. We also consider the false discovery proportion (FDP) defined as the number of false rejections divided by the total number of rejections (and defined to be 0 if there are no rejections). The false discovery rate proposed by Benjamini and Hochberg (1995) controls E(FDP).

Suggested Citation

  • Joseph P. Romano & Michael Wolf, "undated". "Control of Generalized Error Rates in Multiple Testing," IEW - Working Papers 245, Institute for Empirical Research in Economics - University of Zurich.
  • Handle: RePEc:zur:iewwpx:245
    as

    Download full text from publisher

    File URL: https://www.zora.uzh.ch/id/eprint/52136/1/iewwp245.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    2. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    3. Joseph P. Romano & Michael Wolf, 2005. "Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 94-108, March.
    4. Jason Abrevaya & Jian Huang, 2005. "On the Bootstrap of the Maximum Score Estimator," Econometrica, Econometric Society, vol. 73(4), pages 1175-1204, July.
    5. M. Perone Pacifico & C. Genovese & I. Verdinelli & L. Wasserman, 2004. "False Discovery Control for Random Fields," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1002-1014, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rute M. Caeiro & Pedro C. Vicente, 2020. "Knowledge of vitamin A deficiency and crop adoption: Evidence from a field experiment in Mozambique," Agricultural Economics, International Association of Agricultural Economists, vol. 51(2), pages 175-190, March.
    2. Jaschke Philipp & Sulin Sardoschau & Marco Tabellini, 2021. "Scared Straight? Threat and Assimilation of Refugees in Germany," RF Berlin - CReAM Discussion Paper Series 2136, Rockwool Foundation Berlin (RF Berlin) - Centre for Research and Analysis of Migration (CReAM).
    3. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    4. Grácio, Matilde & Vicente, Pedro C., 2021. "Information, get-out-the-vote messages, and peer influence: Causal effects on political behavior in Mozambique," Journal of Development Economics, Elsevier, vol. 151(C).
    5. Rossi, Pauline & Villar, Paola, 2020. "Private health investments under competing risks: Evidence from malaria control in Senegal," Journal of Health Economics, Elsevier, vol. 73(C).
    6. Hızıroğlu Aygün, Aysun & Kırdar, Murat Güray & Koyuncu, Murat & Stoeffler, Quentin, 2024. "Keeping refugee children in school and out of work: Evidence from the world's largest humanitarian cash transfer program," Journal of Development Economics, Elsevier, vol. 168(C).
    7. Cygan-Rehm, Kamila & Karbownik, Krzysztof, 2022. "The effects of incentivizing early prenatal care on infant health," Journal of Health Economics, Elsevier, vol. 83(C).
    8. Paul Dolan & Christian Krekel & Helen Lee & Claire Marshall & Ganga Shreedhar & Allison Smith, 2021. "Happy to help: The welfare effects of a nationwide micro-volunteering programme," CEP Discussion Papers dp1772, Centre for Economic Performance, LSE.
    9. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    10. Stange, Jens & Dickhaus, Thorsten & Navarro, Arcadi & Schunk, Daniel, 2016. "Multiplicity- and dependency-adjusted p-values for control of the family-wise error rate," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 32-40.
    11. Cobb-Clark, Deborah A. & Dahmann, Sarah C. & Kamhöfer, Daniel A. & Schildberg-Hörisch, Hannah, 2023. "Self-control and unhealthy body weight: The role of impulsivity and restraint," Economics & Human Biology, Elsevier, vol. 50(C).
    12. Corsini, Alberto & Pezzoni, Michele & Visentin, Fabiana, 2022. "What makes a productive Ph.D. student?," Research Policy, Elsevier, vol. 51(10).
    13. Lydia Mechtenberg & Grischa Perino & Nicolas Treich & Jean-Robert Tyran & Stephanie Wang, 2021. "Self-Signaling in Moral Voting," Discussion Papers 21-01, University of Copenhagen. Department of Economics.
    14. Ishak, Phoebe W., 2022. "Murder nature: Weather and violent crime in rural Brazil," World Development, Elsevier, vol. 157(C).
    15. D. F. Benoit & D. Van Den Poel, 2010. "Binary quantile regression: A Bayesian approach based on the asymmetric Laplace density," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/662, Ghent University, Faculty of Economics and Business Administration.
    16. Babii, Andrii & Kumar, Rohit, 2023. "Isotonic regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 234(2), pages 371-393.
    17. Chowdhury, Shyamal & Hasan, Syed & Sharma, Uttam, 2024. "The Role of Trainee Selection in the Effectiveness of Vocational Training: Evidence from a Randomized Controlled Trial in Nepal," IZA Discussion Papers 16705, Institute of Labor Economics (IZA).
    18. Krekel, Christian & De Neve, Jan-Emmanuel & Fancourt, Daisy & Layard, Richard, 2021. "A local community course that raises wellbeing and pro-sociality: Evidence from a randomised controlled trial," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 322-336.
    19. Kengo Igei & Kana Takio & Keitaro Aoyagi & Yoshito Takasaki, 2021. "Vocational training for demobilized ex-combatants with disabilities in Rwanda," Journal of Development Effectiveness, Taylor & Francis Journals, vol. 13(4), pages 360-384, October.
    20. Picchio, Matteo & van Ours, Jan C., 2024. "The impact of high temperatures on performance in work-related activities," Labour Economics, Elsevier, vol. 87(C).

    More about this item

    Keywords

    Bootstrap; False Discovery Proportion; False Discovery Rate; Generalized Familywise Error Rates; Multiple Testing; Stepdown Procedure.;
    All these keywords.

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zur:iewwpx:245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Severin Oswald (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.