IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i12p4146-4156.html
   My bibliography  Save this article

BOPA: A Bayesian hierarchical model for outlier expression detection

Author

Listed:
  • Hong, Zhaoping
  • Lian, Heng

Abstract

In many cancer studies, a gene may be expressed in some but not all of the disease samples, reflecting the complexity of the underlying disease. The traditional t-test assumes a mean shift for the tumor samples compared to normal samples and is thus not structured to capture partial differential expressions. More powerful tests specially designed for this situation can find genes with heterogeneous expressions associated with possible subtypes of the cancer. This article proposes a Bayesian model for cancer outlier profile analysis (BOPA). We build on the Gamma–Gamma model introduced in Newton et al. (2001), Kendziorski et al. (2003), and Newton et al. (2004), by using a five-component mixture model to represent various differential expression patterns. The hierarchical mixture model explicitly accounts for outlier expressions, and inferences are based on samples from posterior distributions generated from the Markov chain Monte Carlo algorithm we have developed. We present simulation and real-life dataset analyses to demonstrate the proposed methodology.

Suggested Citation

  • Hong, Zhaoping & Lian, Heng, 2012. "BOPA: A Bayesian hierarchical model for outlier expression detection," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4146-4156.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4146-4156
    DOI: 10.1016/j.csda.2012.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001855
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim J. G. & Chen M-H. & Gray R. J., 2002. "Bayesian Models for Gene Expression With DNA Microarray Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 88-99, March.
    2. repec:bla:biomet:v:62:y:2006:i:1:p:10-18:2 is not listed on IDEAS
    3. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    4. Kim‐Anh Do & Peter Müller & Feng Tang, 2005. "A Bayesian mixture model for differential gene expression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 627-644, June.
    5. Efron, Bradley, 2004. "Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 96-104, January.
    6. Raphael Gottardo & Adrian E. Raftery & Ka Yee Yeung & Roger E. Bumgarner, 2006. "Bayesian Robust Inference for Differential Gene Expression in Microarrays with Multiple Samples," Biometrics, The International Biometric Society, vol. 62(1), pages 10-18, March.
    7. Smith, Brian J., 2007. "boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i11).
    8. repec:bla:biomet:v:62:y:2006:i:1:p:10-18:1 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa C. J. Maria & Isabel Salazar & Luis Sanz & Miguel A. Gómez-Villegas, 2020. "Using Copula to Model Dependence When Testing Multiple Hypotheses in DNA Microarray Experiments: A Bayesian Approximation," Mathematics, MDPI, vol. 8(9), pages 1-22, September.
    2. Mark A. van de Wiel & Kyung In Kim, 2007. "Estimating the False Discovery Rate Using Nonparametric Deconvolution," Biometrics, The International Biometric Society, vol. 63(3), pages 806-815, September.
    3. Bickel David R., 2008. "Correcting the Estimated Level of Differential Expression for Gene Selection Bias: Application to a Microarray Study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-27, March.
    4. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    5. Brian Caffo & Liu Dongmei & Giovanni Parmigiani, 2004. "Power Conjugate Multilevel Models with Applications to Genomics," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1062, Berkeley Electronic Press.
    6. Nott, David J. & Yu, Zeming & Chan, Eva & Cotsapas, Chris & Cowley, Mark J. & Pulvers, Jeremy & Williams, Rohan & Little, Peter, 2007. "Hierarchical Bayes variable selection and microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 852-872, April.
    7. Han, Bing & Dalal, Siddhartha R., 2012. "A Bernstein-type estimator for decreasing density with application to p-value adjustments," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 427-437.
    8. E. M. Conlon & B. L. Postier & B. A. Methe & K. P. Nevin & D. R. Lovley, 2009. "Hierarchical Bayesian meta-analysis models for cross-platform microarray studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1067-1085.
    9. Montazeri Zahra & Yanofsky Corey M. & Bickel David R., 2010. "Shrinkage Estimation of Effect Sizes as an Alternative to Hypothesis Testing Followed by Estimation in High-Dimensional Biology: Applications to Differential Gene Expression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    10. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    11. Michele Guindani & Wesley O. Johnson, 2018. "More nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 239-251, June.
    12. Bilgrau, Anders Ellern & Eriksen, Poul Svante & Rasmussen, Jakob Gulddahl & Johnsen, Hans Erik & Dybkaer, Karen & Boegsted, Martin, 2016. "GMCM: Unsupervised Clustering and Meta-Analysis Using Gaussian Mixture Copula Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i02).
    13. Marot Guillemette & Mayer Claus-Dieter, 2009. "Sequential Analysis for Microarray Data Based on Sensitivity and Meta-Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-35, January.
    14. Rossell David & Guerra Rudy & Scott Clayton, 2008. "Semi-Parametric Differential Expression Analysis via Partial Mixture Estimation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-29, April.
    15. Caffo Brian S & Liu Dongmei & Scharpf Robert B. & Parmigiani Giovanni, 2009. "Likelihood Estimation of Conjugacy Relationships in Linear Models with Applications to High-Throughput Genomics," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-25, May.
    16. Youngjo Lee & Jan F. Bjørnstad, 2013. "Extended likelihood approach to large-scale multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 553-575, June.
    17. N. Bochkina & S. Richardson, 2007. "Tail Posterior Probability for Inference in Pairwise and Multiclass Gene Expression Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1117-1125, December.
    18. Robin, Stephane & Bar-Hen, Avner & Daudin, Jean-Jacques & Pierre, Laurent, 2007. "A semi-parametric approach for mixture models: Application to local false discovery rate estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5483-5493, August.
    19. Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "A Hierarchical Semiparametric Model for Incorporating Intergene Information for Analysis of Genomic Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1168-1177, December.
    20. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4146-4156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.