IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v102y2007mdecemberp1282-1288.html
   My bibliography  Save this article

To How Many Simultaneous Hypothesis Tests Can Normal, Student's t or Bootstrap Calibration Be Applied?

Author

Listed:
  • Fan, Jianqing
  • Hall, Peter
  • Yao, Qiwei

Abstract

In the analysis of microarray data, and in some other contemporary statistical problems, it is not uncommon to apply hypothesis tests in a highly simultaneous way. The number, N say, of tests used can be much larger than the sample sizes, n, to which the tests are applied, yet we wish to calibrate the tests so that the overall level of the simultaneous test is accurate. Often the sampling distribution is quite different for each test, so there may not be an opportunity to combine data across samples. In this setting, how large can N be, as a function of n, before level accuracy becomes poor? Here we answer this question in cases where the statistic under test is of Student's t type. We show that if either the normal or Student t distribution is used for calibration, then the level of the simultaneous test is accurate provided that log N increases at a strictly slower rate than n1/3 as n diverges. On the other hand, if bootstrap methods are used for calibration, then we may choose log N almost as large as n1/2 and still achieve asymptotic-level accuracy. The implications of these results are explored both theoretically and numerically.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Fan, Jianqing & Hall, Peter & Yao, Qiwei, 2007. "To How Many Simultaneous Hypothesis Tests Can Normal, Student's t or Bootstrap Calibration Be Applied?," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1282-1288, December.
  • Handle: RePEc:bes:jnlasa:v:102:y:2007:m:december:p:1282-1288
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2007/00000102/00000480/art00022
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fan, Jianqing & Peng, Heng & Huang, Tao, 2005. "Semilinear High-Dimensional Model for Normalization of Microarray Data: A Theoretical Analysis and Partial Consistency," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 781-796, September.
    2. Efron, Bradley, 2004. "Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 96-104, January.
    3. Huang, Jian & Wang, Deli & Zhang, Cun-Hui, 2005. "A Two-Way Semilinear Model for Normalization and Analysis of cDNA Microarray Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 814-829, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Min Yen, 2013. "Testing Jumps via False Discovery Rate Control," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.
    2. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," Journal of Econometrics, Elsevier, vol. 196(2), pages 259-274.
    3. Wang, Siyang & Cui, Hengjian, 2013. "Generalized F test for high dimensional linear regression coefficients," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 134-149.
    4. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    5. Javier Hidalgo & Marcia M Schafgans, 2015. "Inference and Testing Breaks in Large Dynamic Panels with Strong Cross Sectional Dependence," STICERD - Econometrics Paper Series /2015/583, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Central limit theorems and multiplier bootstrap when p is much larger than n," CeMMAP working papers 45/12, Institute for Fiscal Studies.
    7. Santu Ghosh & Alan M. Polansky, 2022. "Large-Scale Simultaneous Testing Using Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 808-843, August.
    8. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    9. Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
    10. Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
    11. Yang, Jun & Zou, Ran & Cheng, Jixin & Geng, Zhifei & Li, Qi, 2023. "Environmental technical efficiency and its dynamic evolution in China's industry: A resource endowment perspective," Resources Policy, Elsevier, vol. 82(C).
    12. Hidalgo, Javier & Schafgans, Marcia, 2017. "Inference and testing breaks in large dynamic panels with strong cross sectional dependence," LSE Research Online Documents on Economics 68839, London School of Economics and Political Science, LSE Library.
    13. Wei, Waverly & Zhou, Yuqing & Zheng, Zeyu & Wang, Jingshen, 2024. "Inference on the best policies with many covariates," Journal of Econometrics, Elsevier, vol. 239(2).
    14. Solomon W. Polachek & Tirthatanmoy Das & Rewat Thamma-Apiroam, 2015. "Micro- and Macroeconomic Implications of Heterogeneity in the Production of Human Capital," Journal of Political Economy, University of Chicago Press, vol. 123(6), pages 1410-1455.
    15. Victor Chernozhukov & Denis Chetverikov & Kengo Kato & Yuta Koike, 2022. "High-dimensional Data Bootstrap," Papers 2205.09691, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nott, David J. & Yu, Zeming & Chan, Eva & Cotsapas, Chris & Cowley, Mark J. & Pulvers, Jeremy & Williams, Rohan & Little, Peter, 2007. "Hierarchical Bayes variable selection and microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 852-872, April.
    2. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    3. You, Jinhong & Zhou, Haibo, 2008. "A two-stage approach to semilinear in-slide models," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1610-1634, September.
    4. Liping Zhu & Jinhong You & Qunfang Xu, 2014. "Statistical Inference for Single-index Panel Data Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 830-843, September.
    5. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    6. Pounds Stanley B. & Gao Cuilan L. & Zhang Hui, 2012. "Empirical Bayesian Selection of Hypothesis Testing Procedures for Analysis of Sequence Count Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-32, October.
    7. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    8. Won, Joong-Ho & Lim, Johan & Yu, Donghyeon & Kim, Byung Soo & Kim, Kyunga, 2014. "Monotone false discovery rate," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 86-93.
    9. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    10. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    11. Cui, Xia & Lu, Ying & Peng, Heng, 2017. "Estimation of partially linear regression models under the partial consistency property," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 103-121.
    12. Angela Schörgendorfer & Adam J. Branscum & Timothy E. Hanson, 2013. "A Bayesian Goodness of Fit Test and Semiparametric Generalization of Logistic Regression with Measurement Data," Biometrics, The International Biometric Society, vol. 69(2), pages 508-519, June.
    13. Jingxin Zhao & Heng Peng & Tao Huang, 2018. "Variance estimation for semiparametric regression models by local averaging," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 453-476, June.
    14. Han, Bing & Dalal, Siddhartha R., 2012. "A Bernstein-type estimator for decreasing density with application to p-value adjustments," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 427-437.
    15. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    16. Kline, Patrick & Walters, Christopher, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Institute for Research on Labor and Employment, Working Paper Series qt3z72m9kn, Institute of Industrial Relations, UC Berkeley.
    17. He, Yi & Pan, Wei & Lin, Jizhen, 2006. "Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 641-658, November.
    18. Joel L. Horowitz & Jian Huang, 2012. "Penalized estimation of high-dimensional models under a generalized sparsity condition," CeMMAP working papers CWP17/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Cheng, Cheng, 2009. "Internal validation inferences of significant genomic features in genome-wide screening," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 788-800, January.
    20. Sinjini Sikdar & Somnath Datta & Susmita Datta, 2017. "EAMA: Empirically adjusted meta-analysis for large-scale simultaneous hypothesis testing in genomic experiments," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-19, October.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:102:y:2007:m:december:p:1282-1288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.