IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v56y2004i2p305-315.html
   My bibliography  Save this article

A class of multivariate skew-normal models

Author

Listed:
  • Arjun Gupta
  • John Chen

Abstract

No abstract is available for this item.

Suggested Citation

  • Arjun Gupta & John Chen, 2004. "A class of multivariate skew-normal models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 305-315, June.
  • Handle: RePEc:spr:aistmt:v:56:y:2004:i:2:p:305-315
    DOI: 10.1007/BF02530547
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02530547
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02530547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Genton, Marc G. & He, Li & Liu, Xiangwei, 2001. "Moments of skew-normal random vectors and their quadratic forms," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 319-325, February.
    2. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    3. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Minozzo, 2011. "On the existence of some skew normal stationary processes," Working Papers 20/2011, University of Verona, Department of Economics.
    2. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid–incurred data," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 121-131.
    3. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    4. Sanjeeva Kumar Jha & Ningthoukhongjam Vikimchandra Singh, 2023. "A Skew-Normal Spatial Simultaneous Autoregressive Model and its Implementation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 306-323, February.
    5. Ramesh Gupta & N. Balakrishnan, 2012. "Log-concavity and monotonicity of hazard and reversed hazard functions of univariate and multivariate skew-normal distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 181-191, February.
    6. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    7. Lourdes Montenegro & Víctor Lachos & Heleno Bolfarine, 2010. "Inference for a skew extension of the Grubbs model," Statistical Papers, Springer, vol. 51(3), pages 701-715, September.
    8. William T. Shaw & Ian R. C. Buckley, 2009. "The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map," Papers 0901.0434, arXiv.org.
    9. Wang, Tonghui & Li, Baokun & Gupta, Arjun K., 2009. "Distribution of quadratic forms under skew normal settings," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 533-545, March.
    10. Kozubowski, Tomasz J. & Nolan, John P., 2008. "Infinite divisibility of skew Gaussian and Laplace laws," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 654-660, April.
    11. Jiangyan Wang & Miao Yang & Anandamayee Majumdar, 2018. "Comparative study and sensitivity analysis of skewed spatial processes," Computational Statistics, Springer, vol. 33(1), pages 75-98, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.
    2. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Arellano-Valle, R. B. & del Pino, G. & San Martín, E., 2002. "Definition and probabilistic properties of skew-distributions," Statistics & Probability Letters, Elsevier, vol. 58(2), pages 111-121, June.
    4. Kozubowski, Tomasz J. & Nolan, John P., 2008. "Infinite divisibility of skew Gaussian and Laplace laws," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 654-660, April.
    5. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    6. David Mayston, 2015. "Analysing the effectiveness of public service producers with endogenous resourcing," Journal of Productivity Analysis, Springer, vol. 44(1), pages 115-126, August.
    7. Centorrino, Samuele & Pérez-Urdiales, María, 2023. "Maximum likelihood estimation of stochastic frontier models with endogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 82-105.
    8. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    9. Young, Phil D. & Harvill, Jane L. & Young, Dean M., 2016. "A derivation of the multivariate singular skew-normal density function," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 40-45.
    10. Wang, Tonghui & Li, Baokun & Gupta, Arjun K., 2009. "Distribution of quadratic forms under skew normal settings," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 533-545, March.
    11. Loperfido, Nicola, 2002. "Statistical implications of selectively reported inferential results," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 13-22, January.
    12. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    13. Belotti, Federico & Ilardi, Giuseppe, 2018. "Consistent inference in fixed-effects stochastic frontier models," Journal of Econometrics, Elsevier, vol. 202(2), pages 161-177.
    14. Angela Montanari & Cinzia Viroli, 2010. "A skew-normal factor model for the analysis of student satisfaction towards university courses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 473-487.
    15. Adelchi Azzalini & Marc G. Genton & Bruno Scarpa, 2010. "Invariance-based estimating equations for skew-symmetric distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 275-298.
    16. Fang, B.Q., 2005. "Noncentral quadratic forms of the skew elliptical variables," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 410-430, August.
    17. Naveau, Philippe & Genton, Marc G. & Shen, Xilin, 2005. "A skewed Kalman filter," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 382-400, June.
    18. Ahmed Hossain & Joseph Beyene, 2015. "Application of skew-normal distribution for detecting differential expression to microRNA data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 477-491, March.
    19. Fang, B. Q., 2003. "The skew elliptical distributions and their quadratic forms," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 298-314, November.
    20. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:56:y:2004:i:2:p:305-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.