IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v75y2014icp1-14.html
   My bibliography  Save this article

Kalman filter variants in the closed skew normal setting

Author

Listed:
  • Rezaie, Javad
  • Eidsvik, Jo

Abstract

The filtering problem (or the dynamic data assimilation problem) is studied for linear and nonlinear systems with continuous state space and over discrete time steps. Filtering approaches based on the conjugate closed skewed normal probability density function are presented. This distribution allows additional flexibility over the usual Gaussian approximations. With linear dynamic systems the filtering problem can be solved in analytical form using expressions for the closed skew normal distribution. With nonlinear dynamic systems an ensemble-based version is proposed for fitting a closed skew normal distribution at each updating step. Numerical examples discuss various special cases of the methods.

Suggested Citation

  • Rezaie, Javad & Eidsvik, Jo, 2014. "Kalman filter variants in the closed skew normal setting," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 1-14.
  • Handle: RePEc:eee:csdana:v:75:y:2014:i:c:p:1-14
    DOI: 10.1016/j.csda.2014.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000255
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flecher, C. & Naveau, P. & Allard, D., 2009. "Estimating the closed skew-normal distribution parameters using weighted moments," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 1977-1984, October.
    2. Gupta, Arjun K. & González-Farías, Graciela & Domínguez-Molina, J. Armando, 2004. "A multivariate skew normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 181-190, April.
    3. Omid Karimi & Mohsen Mohammadzadeh, 2012. "Bayesian spatial regression models with closed skew normal correlated errors and missing observations," Statistical Papers, Springer, vol. 53(1), pages 205-218, February.
    4. Naveau, Philippe & Genton, Marc G. & Shen, Xilin, 2005. "A skewed Kalman filter," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 382-400, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaygysyz Guljanov & Willi Mutschler & Mark Trede, 2022. "Pruned Skewed Kalman Filter and Smoother: With Application to the Yield Curve," CQE Working Papers 10122, Center for Quantitative Economics (CQE), University of Muenster.
    2. Reinaldo B. Arellano-Valle & Javier E. Contreras-Reyes & Freddy O. López Quintero & Abel Valdebenito, 2019. "A skew-normal dynamic linear model and Bayesian forecasting," Computational Statistics, Springer, vol. 34(3), pages 1055-1085, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    2. Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2022. "Some properties of the unified skew-normal distribution," Statistical Papers, Springer, vol. 63(2), pages 461-487, April.
    3. Gaygysyz Guljanov & Willi Mutschler & Mark Trede, 2022. "Pruned Skewed Kalman Filter and Smoother: With Application to the Yield Curve," CQE Working Papers 10122, Center for Quantitative Economics (CQE), University of Muenster.
    4. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    5. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    6. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2007. "Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers," Journal of Econometrics, Elsevier, vol. 137(2), pages 641-673, April.
    7. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    8. William Dunsmuir & Jieyi He, 2017. "Marginal Estimation of Parameter Driven Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 120-144, January.
    9. Matthias Wagener & Andriette Bekker & Mohammad Arashi, 2021. "Mastering the Body and Tail Shape of a Distribution," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    10. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    11. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    12. Wang, Tonghui & Li, Baokun & Gupta, Arjun K., 2009. "Distribution of quadratic forms under skew normal settings," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 533-545, March.
    13. Cabral, Celso Rômulo Barbosa & da-Silva, Cibele Queiroz & Migon, Helio S., 2014. "A dynamic linear model with extended skew-normal for the initial distribution of the state parameter," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 64-80.
    14. Reinaldo B. Arellano-Valle & Javier E. Contreras-Reyes & Freddy O. López Quintero & Abel Valdebenito, 2019. "A skew-normal dynamic linear model and Bayesian forecasting," Computational Statistics, Springer, vol. 34(3), pages 1055-1085, September.
    15. Uliha, Gábor, 2016. "Az olajár gyengülő makrogazdasági hatásai. Két versengő elmélet szintézise [Weakening macroeconomic effects of the oil price. A synthesis of two competing theories]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 787-818.
    16. Bodnar, Olha & Bodnar, Taras & Gupta, Arjun K., 2010. "Estimation and inference for dependence in multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 869-881, April.
    17. Ogasawara, Haruhiko, 2021. "A non-recursive formula for various moments of the multivariate normal distribution with sectional truncation," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    18. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    19. A. Nanthakumar, 2020. "A Comparison of Archimedean Copula Models for approximating Bivariate Skew-Normal Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(1), pages 1-70, January.
    20. Christophe Ley, 2014. "Flexible Modelling in Statistics: Past, present and Future," Working Papers ECARES ECARES 2014-42, ULB -- Universite Libre de Bruxelles.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:75:y:2014:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.