Some laws of the iterated logarithm in Hilbertian autoregressive models
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Denis Bosq, 2002. "Estimation of Mean and Covariance Operator of Autoregressive Processes in Banach Spaces," Statistical Inference for Stochastic Processes, Springer, vol. 5(3), pages 287-306, October.
- Philippe C. Besse & Herve Cardot & David B. Stephenson, 2000. "Autoregressive Forecasting of Some Functional Climatic Variations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 673-687, December.
- Mas, André & Menneteau, Ludovic, 2003. "Large and moderate deviations for infinite-dimensional autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 241-260, November.
- Ruymgaart, Frits H. & Yang, Song, 1997. "Some Applications of Watson's Perturbation Approach to Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 48-60, January.
- Yurinskii, V. V., 1976. "Exponential inequalities for sums of random vectors," Journal of Multivariate Analysis, Elsevier, vol. 6(4), pages 473-499, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Álvarez-Liébana, J. & Bosq, D. & Ruiz-Medina, M.D., 2017. "Asymptotic properties of a component-wise ARH(1) plug-in predictor," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 12-34.
- Yu, Miao & Si, Shen, 2009. "Moderate deviation principle for autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1952-1961, October.
- Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
- Yu Miao & Yanling Wang & Guangyu Yang, 2015. "Moderate Deviation Principles for Empirical Covariance in the Neighbourhood of the Unit Root," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 234-255, March.
- Mas, André, 2007. "Weak convergence in the functional autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1231-1261, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
- Mas, André, 2007. "Weak convergence in the functional autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1231-1261, July.
- Álvarez-Liébana, J. & Bosq, D. & Ruiz-Medina, M.D., 2017. "Asymptotic properties of a component-wise ARH(1) plug-in predictor," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 12-34.
- Mas, André & Menneteau, Ludovic, 2003. "Large and moderate deviations for infinite-dimensional autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 241-260, November.
- Ayse Yilmaz & Ufuk Yolcu, 2022. "Dendritic neuron model neural network trained by modified particle swarm optimization for time‐series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 793-809, July.
- repec:cte:wsrepe:ws1506 is not listed on IDEAS
- Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
- Mason David M. & Eubank Randy, 2012. "Moderate deviations and intermediate efficiency for lack-of-fit tests," Statistics & Risk Modeling, De Gruyter, vol. 29(2), pages 175-187, June.
- Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013.
"Description length and dimensionality reduction in functional data analysis,"
Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
- D. S. Poskitt & Arivalzahan Sengarapillai, 2009. "Description Length and Dimensionality Reduction in Functional Data Analysis," Monash Econometrics and Business Statistics Working Papers 13/09, Monash University, Department of Econometrics and Business Statistics.
- Kargin, V. & Onatski, A., 2008.
"Curve forecasting by functional autoregression,"
Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
- A. Onatski & V. Karguine, 2005. "Curve Forecasting by Functional Autoregression," Computing in Economics and Finance 2005 59, Society for Computational Economics.
- Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 331-350, June.
- Ying Chen & Wee Song Chua & Wolfgang Karl Härdle, 2019.
"Forecasting limit order book liquidity supply–demand curves with functional autoregressive dynamics,"
Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1473-1489, September.
- Chen, Ying & Chua, Wee Song & Härdle, Wolfgang Karl, 2016. "Forecasting limit order book liquidity supply-demand curves with functional AutoRegressive dynamics," SFB 649 Discussion Papers 2016-025, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Alessia Caponera, 2021. "SPHARMA approximations for stationary functional time series on the sphere," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 609-634, October.
- Holger Dette & Pascal Quanz, 2023. "Detecting relevant changes in the spatiotemporal mean function," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 505-532, September.
- Rituparna Sen & Anandamayee Majumdar & Shubhangi Sikaria, 2022.
"Bayesian Testing of Granger Causality in Functional Time Series,"
Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 191-210, September.
- Rituparna Sen & Anandamayee Majumdar & Shubhangi Sikaria, 2021. "Bayesian Testing Of Granger Causality In Functional Time Series," Papers 2112.15315, arXiv.org.
- Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski & Małgorzata Snarska, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
- Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
- Gregory Rice & Han Lin Shang, 2017. "A Plug-in Bandwidth Selection Procedure for Long-Run Covariance Estimation with Stationary Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 591-609, July.
- repec:hum:wpaper:sfb649dp2016-025 is not listed on IDEAS
- Munk, A. & Paige, R. & Pang, J. & Patrangenaru, V. & Ruymgaart, F., 2008. "The one- and multi-sample problem for functional data with application to projective shape analysis," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 815-833, May.
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022.
"Seasonal functional autoregressive models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J Hyndman, 2019. "Seasonal Functional Autoregressive Models," Monash Econometrics and Business Statistics Working Papers 16/19, Monash University, Department of Econometrics and Business Statistics.
- Otsu, Taisuke, 2011.
"Moderate deviations of generalized method of moments and empirical likelihood estimators,"
Journal of Multivariate Analysis, Elsevier, vol. 102(8), pages 1203-1216, September.
- Taisuke Otsu, 2011. "Moderate Deviations of Generalized Method of Moments and Empirical Likelihood Estimators," Cowles Foundation Discussion Papers 1785, Cowles Foundation for Research in Economics, Yale University.
More about this item
Keywords
Laws of the iterated logarithm Autoregressive Hilbertian processes Covariance operators Functional principal component analysis;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:92:y:2005:i:2:p:405-425. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.