IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v92y2005i2p405-425.html
   My bibliography  Save this article

Some laws of the iterated logarithm in Hilbertian autoregressive models

Author

Listed:
  • Menneteau, Ludovic

Abstract

We consider the law of the iterated logarithm for the empirical covariance of Hilbertian autoregressive processes. As an application, we obtain laws of the iterated logarithm for the eigenvalues and associated projectors of the empirical covariance.

Suggested Citation

  • Menneteau, Ludovic, 2005. "Some laws of the iterated logarithm in Hilbertian autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 405-425, February.
  • Handle: RePEc:eee:jmvana:v:92:y:2005:i:2:p:405-425
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00175-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denis Bosq, 2002. "Estimation of Mean and Covariance Operator of Autoregressive Processes in Banach Spaces," Statistical Inference for Stochastic Processes, Springer, vol. 5(3), pages 287-306, October.
    2. Philippe C. Besse & Herve Cardot & David B. Stephenson, 2000. "Autoregressive Forecasting of Some Functional Climatic Variations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 673-687, December.
    3. Mas, André & Menneteau, Ludovic, 2003. "Large and moderate deviations for infinite-dimensional autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 241-260, November.
    4. Ruymgaart, Frits H. & Yang, Song, 1997. "Some Applications of Watson's Perturbation Approach to Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 48-60, January.
    5. Yurinskii, V. V., 1976. "Exponential inequalities for sums of random vectors," Journal of Multivariate Analysis, Elsevier, vol. 6(4), pages 473-499, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Álvarez-Liébana, J. & Bosq, D. & Ruiz-Medina, M.D., 2017. "Asymptotic properties of a component-wise ARH(1) plug-in predictor," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 12-34.
    2. Yu, Miao & Si, Shen, 2009. "Moderate deviation principle for autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1952-1961, October.
    3. Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
    4. Yu Miao & Yanling Wang & Guangyu Yang, 2015. "Moderate Deviation Principles for Empirical Covariance in the Neighbourhood of the Unit Root," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 234-255, March.
    5. Mas, André, 2007. "Weak convergence in the functional autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1231-1261, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
    2. Mas, André, 2007. "Weak convergence in the functional autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1231-1261, July.
    3. Álvarez-Liébana, J. & Bosq, D. & Ruiz-Medina, M.D., 2017. "Asymptotic properties of a component-wise ARH(1) plug-in predictor," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 12-34.
    4. Mas, André & Menneteau, Ludovic, 2003. "Large and moderate deviations for infinite-dimensional autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 241-260, November.
    5. Ayse Yilmaz & Ufuk Yolcu, 2022. "Dendritic neuron model neural network trained by modified particle swarm optimization for time‐series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 793-809, July.
    6. repec:cte:wsrepe:ws1506 is not listed on IDEAS
    7. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    8. Mason David M. & Eubank Randy, 2012. "Moderate deviations and intermediate efficiency for lack-of-fit tests," Statistics & Risk Modeling, De Gruyter, vol. 29(2), pages 175-187, June.
    9. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    10. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    11. Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 331-350, June.
    12. Ying Chen & Wee Song Chua & Wolfgang Karl Härdle, 2019. "Forecasting limit order book liquidity supply–demand curves with functional autoregressive dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1473-1489, September.
    13. Alessia Caponera, 2021. "SPHARMA approximations for stationary functional time series on the sphere," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 609-634, October.
    14. Holger Dette & Pascal Quanz, 2023. "Detecting relevant changes in the spatiotemporal mean function," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 505-532, September.
    15. Rituparna Sen & Anandamayee Majumdar & Shubhangi Sikaria, 2022. "Bayesian Testing of Granger Causality in Functional Time Series," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 191-210, September.
    16. Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski & Małgorzata Snarska, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 331-350, June.
    17. Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
    18. Gregory Rice & Han Lin Shang, 2017. "A Plug-in Bandwidth Selection Procedure for Long-Run Covariance Estimation with Stationary Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 591-609, July.
    19. repec:hum:wpaper:sfb649dp2016-025 is not listed on IDEAS
    20. Munk, A. & Paige, R. & Pang, J. & Patrangenaru, V. & Ruymgaart, F., 2008. "The one- and multi-sample problem for functional data with application to projective shape analysis," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 815-833, May.
    21. Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
    22. Otsu, Taisuke, 2011. "Moderate deviations of generalized method of moments and empirical likelihood estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(8), pages 1203-1216, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:92:y:2005:i:2:p:405-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.