IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i9p1952-1961.html
   My bibliography  Save this article

Moderate deviation principle for autoregressive processes

Author

Listed:
  • Yu, Miao
  • Si, Shen

Abstract

A moderate deviation principle for autoregressive processes is established. As statistical applications we provide the moderate deviation estimates of the least square and the Yule-Walker estimators of the parameter of an autoregressive process. The main assumption on the autoregressive process is the Gaussian integrability condition for the noise, which is weaker than the assumption of Logarithmic Sobolev Inequality in [H. Djellout, A. Guillin, L. Wu, Moderate deviations of empirical periodogram and nonlinear functionals of moving average processes, Ann. I. H. Poincaré-PR 42 (2006) 393-416].

Suggested Citation

  • Yu, Miao & Si, Shen, 2009. "Moderate deviation principle for autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1952-1961, October.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:9:p:1952-1961
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(09)00120-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bercu, B. & Gamboa, F. & Rouault, A., 1997. "Large deviations for quadratic forms of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 71(1), pages 75-90, October.
    2. Chen, Xia, 1997. "Moderate deviations for m-dependent random variables with Banach space values," Statistics & Probability Letters, Elsevier, vol. 35(2), pages 123-134, September.
    3. Mas, André & Menneteau, Ludovic, 2003. "Large and moderate deviations for infinite-dimensional autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 241-260, November.
    4. Menneteau, Ludovic, 2005. "Some laws of the iterated logarithm in Hilbertian autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 405-425, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2023. "Limit Theory under Network Dependence and Nonstationarity," Papers 2308.01418, arXiv.org, revised Aug 2023.
    2. Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Miao & Yanling Wang & Guangyu Yang, 2015. "Moderate Deviation Principles for Empirical Covariance in the Neighbourhood of the Unit Root," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 234-255, March.
    2. Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
    3. Mas, André, 2007. "Weak convergence in the functional autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1231-1261, July.
    4. Álvarez-Liébana, J. & Bosq, D. & Ruiz-Medina, M.D., 2017. "Asymptotic properties of a component-wise ARH(1) plug-in predictor," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 12-34.
    5. Kakizawa, Yoshihide, 2000. "On Bahadur asymptotic efficiency of the maximum likelihood and quasi-maximum likelihood estimators in Gaussian stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 85(1), pages 29-44, January.
    6. Miao, Yu & Yin, Qing, 2024. "Cramér’s moderate deviations for the LS estimator of the autoregressive processes in the neighborhood of the unit root," Statistics & Probability Letters, Elsevier, vol. 209(C).
    7. Worms, Julien, 2001. "Large and moderate deviations upper bounds for the Gaussian autoregressive process," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 235-243, February.
    8. Gamboa, F. & Rouault, A. & Zani, M., 1999. "A functional large deviations principle for quadratic forms of Gaussian stationary processes," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 299-308, July.
    9. Kanaya, Shin & Otsu, Taisuke, 2012. "Large deviations of realized volatility," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 546-581.
    10. Menneteau, Ludovic, 2005. "Some laws of the iterated logarithm in Hilbertian autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 405-425, February.
    11. Macci, Claudio & Pacchiarotti, Barbara, 2017. "Large deviations for estimators of the parameters of a neuronal response latency model," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 65-75.
    12. Mas, André & Menneteau, Ludovic, 2003. "Large and moderate deviations for infinite-dimensional autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 241-260, November.
    13. Mao, Mingzhi, 2014. "The asymptotic behaviors for least square estimation of multi-casting autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 110-124.
    14. Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
    15. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2014. "Large Deviations Of The Realized (Co-)Volatility Vector," Working Papers hal-01082903, HAL.
    16. Djellout, H. & Guillin, A., 2001. "Moderate deviations for Markov chains with atom," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 203-217, October.
    17. Zani, Marguerite, 2002. "Large Deviations for Quadratic Forms of Locally Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 205-228, May.
    18. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2017. "Large Deviations Of The Realized (Co-)Volatility Vector," Post-Print hal-01082903, HAL.
    19. Chun Yip Yau & Zifeng Zhao, 2016. "Inference for multiple change points in time series via likelihood ratio scan statistics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 895-916, September.
    20. Wang, Xiaochang & Feng, Shui & Guo, Yiping & Rémillard, Bruno N., 2024. "Large deviations for the Yule–Walker estimator of near critical autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:9:p:1952-1961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.