IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v67y1998i1p1-22.html
   My bibliography  Save this article

Spherical Deconvolution

Author

Listed:
  • Healy, Dennis M.
  • Hendriks, Harrie
  • Kim, Peter T.

Abstract

This paper proposes nonparametric deconvolution density estimation overS2. Here we would think of theS2elements of interest being corrupted by randomSO(3) elements (rotations). The resulting density on the observations would be a convolution of theSO(3) density with the trueS2density. Consequently, the methodology, as in the Euclidean case, would be to use Fourier analysis onSO(3) andS2, involving rotational and spherical harmonics, respectively. We especially consider the case where the deconvolution operator is a bounded operator lowering the Sobolev order by a finite amount. Consistency results are obtained with rates of convergence calculated under the expectedS2and Sobolev square norms that are proportionally inverse to some power of the sample size. As an example we introduce the rotational version of the Laplace distribution.

Suggested Citation

  • Healy, Dennis M. & Hendriks, Harrie & Kim, Peter T., 1998. "Spherical Deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 1-22, October.
  • Handle: RePEc:eee:jmvana:v:67:y:1998:i:1:p:1-22
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91757-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Z. D. & Rao, C. Radhakrishna & Zhao, L. C., 1988. "Kernel estimators of density function of directional data," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 24-39, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hendriks, Harrie, 2003. "Application of fast spherical Fourier transform to density estimation," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 209-221, February.
    2. Jeon, Jeong Min & Van Keilegom, Ingrid, 2023. "Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    3. Kim, Peter T. & Koo, Ja-Yong, 2002. "Optimal Spherical Deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 21-42, January.
    4. Bissantz, Nicolai & Hohage, T. & Munk, Axel & Ruymgaart, F., 2007. "Convergence rates of general regularization methods for statistical inverse problems and applications," Technical Reports 2007,04, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Jammalamadaka, S. Rao & Terdik, György H., 2019. "Harmonic analysis and distribution-free inference for spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 436-451.
    6. Crane, M. & Patrangenaru, V., 2011. "Random change on a Lie group and mean glaucomatous projective shape change detection from stereo pair images," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 225-237, February.
    7. Hielscher, Ralf, 2013. "Kernel density estimation on the rotation group and its application to crystallographic texture analysis," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 119-143.
    8. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    9. Goldenshluger, Alexander, 2002. "Density Deconvolution in the Circular Structural Model," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 360-375, May.
    10. Vareschi, T., 2014. "Application of second generation wavelets to blind spherical deconvolution," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 398-417.
    11. Pelletier, Bruno, 2005. "Kernel density estimation on Riemannian manifolds," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 297-304, July.
    12. Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
    13. Kim, Peter T. & Koo, Ja-Yong & Park, Heon Jin, 2004. "Sharp minimaxity and spherical deconvolution for super-smooth error distributions," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 384-392, August.
    14. Koo, Ja-Yong & Kim, Peter T., 2008. "Sharp adaptation for spherical inverse problems with applications to medical imaging," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 165-190, February.
    15. Arnoud van Rooij & Frits Ruymgaart, 2001. "Abstract Inverse Estimation with Application to Deconvolution on Locally Compact Abelian Groups," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 781-798, December.
    16. Kim, Peter T. & Koo, Ja-Yong & Luo, Zhi-Ming, 2009. "Weyl eigenvalue asymptotics and sharp adaptation on vector bundles," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1962-1978, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
    2. Fabian Dunker & Konstantin Eckle & Katharina Proksch & Johannes Schmidt-Hieber, 2017. "Tests for qualitative features in the random coefficients model," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 225, Courant Research Centre PEG.
    3. Arthur Pewsey & Eduardo García-Portugués, 2021. "Rejoinder on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 76-82, March.
    4. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    5. Graciela Boente & Daniela Rodriguez & Wenceslao González Manteiga, 2014. "Goodness-of-fit Test for Directional Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 259-275, March.
    6. Pham Ngoc, Thanh Mai, 2019. "Adaptive optimal kernel density estimation for directional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 248-267.
    7. Charles C. Taylor & Kanti V. Mardia & Marco Di Marzio & Agnese Panzera, 2012. "Validating protein structure using kernel density estimates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2379-2388, July.
    8. Agostinelli, Claudio, 2007. "Robust estimation for circular data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5867-5875, August.
    9. Di Marzio, Marco & Panzera, Agnese & Taylor, Charles C., 2009. "Local polynomial regression for circular predictors," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2066-2075, October.
    10. Eduardo GarcÍa-Portugués & Ingrid Van Keilegom & Rosa M. Crujeiras and & Wenceslao González-Manteiga, 2016. "Testing parametric models in linear-directional regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1178-1191, December.
    11. Cai, J. & Einmahl, J.H.J. & de Haan, L.F.M., 2011. "Estimation of extreme risk regions under multivariate regular variation," Other publications TiSEM b7a72a8d-f9bc-4129-ae9b-a, Tilburg University, School of Economics and Management.
    12. Jan Beran & Britta Steffens & Sucharita Ghosh, 2022. "On nonparametric regression for bivariate circular long-memory time series," Statistical Papers, Springer, vol. 63(1), pages 29-52, February.
    13. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    14. Di Marzio, Marco & Fensore, Stefania & Panzera, Agnese & Taylor, Charles C., 2019. "Kernel density classification for spherical data," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 23-29.
    15. Klemelä, Jussi, 2000. "Estimation of Densities and Derivatives of Densities with Directional Data," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 18-40, April.
    16. Cai, J., 2012. "Estimation concerning risk under extreme value conditions," Other publications TiSEM a92b089f-bc4c-41c2-b297-c, Tilburg University, School of Economics and Management.
    17. Aboubacar Amiri & Baba Thiam & Thomas Verdebout, 2017. "On the Estimation of the Density of a Directional Data Stream," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 249-267, March.
    18. Mercedes Fernandez Sau & Daniela Rodriguez, 2018. "Minimum distance method for directional data and outlier detection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 587-603, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:1:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.