IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i7p2524-2536.html
   My bibliography  Save this article

A smoothed bootstrap test for independence based on mutual information

Author

Listed:
  • Wu, Edmond H.C.
  • Yu, Philip L.H.
  • Li, W.K.

Abstract

A test for independence of multivariate time series based on the mutual information measure is proposed. First of all, a test for independence between two variables based on i.i.d. (time-independent) data is constructed and is then extended to incorporate higher dimensions and strictly stationary time series data. The smoothed bootstrap method is used to estimate the null distribution of mutual information. The experimental results reveal that the proposed smoothed bootstrap test performs better than the existing tests and can achieve high powers even for moderate dependence structures. Finally, the proposed test is applied to assess the actual independence of components obtained from independent component analysis (ICA).

Suggested Citation

  • Wu, Edmond H.C. & Yu, Philip L.H. & Li, W.K., 2009. "A smoothed bootstrap test for independence based on mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2524-2536, May.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2524-2536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00564-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, John Xu, 2000. "A Consistent Test Of Conditional Parametric Distributions," Econometric Theory, Cambridge University Press, vol. 16(5), pages 667-691, October.
    2. La Rocca, Michele & Perna, Cira, 2005. "Variable selection in neural network regression models with dependent data: a subsampling approach," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 415-429, February.
    3. P. M. Robinson, 1991. "Consistent Nonparametric Entropy-Based Testing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 437-453.
    4. Buhlmann, Peter & Kunsch, Hans R., 1999. "Block length selection in the bootstrap for time series," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 295-310, September.
    5. Yongmiao Hong & Halbert White, 2005. "Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence," Econometrica, Econometric Society, vol. 73(3), pages 837-901, May.
    6. Shimizu, Shohei & Hyvarinen, Aapo & Hoyer, Patrik O. & Kano, Yutaka, 2006. "Finding a causal ordering via independent component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3278-3293, July.
    7. Meintanis, Simos G. & Iliopoulos, George, 2008. "Fourier methods for testing multivariate independence," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1884-1895, January.
    8. Kojadinovic, Ivan, 2004. "Agglomerative hierarchical clustering of continuous variables based on mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 269-294, June.
    9. Ahmad, Ibrahim A. & Li, Qi, 1997. "Testing independence by nonparametric kernel method," Statistics & Probability Letters, Elsevier, vol. 34(2), pages 201-210, June.
    10. Taskinen, S. & Sirkia, S. & Oja, H., 2007. "Independent component analysis based on symmetrised scatter matrices," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5103-5111, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Keyser, Steven & Gijbels, Irène, 2024. "Parametric dependence between random vectors via copula-based divergence measures," Journal of Multivariate Analysis, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    2. Stefania D'Amico, 2004. "Density Estimation and Combination under Model Ambiguity," Computing in Economics and Finance 2004 273, Society for Computational Economics.
    3. Dahl, Christian M. & Nielsen, Steen, 2001. "The Random Walk Of Stock Prices: Implications Of Recent Nonpara-Metric Tests," Working Papers 07-2001, Copenhagen Business School, Department of Economics.
    4. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    5. Stefania D'Amico, 2005. "Density selection and combination under model ambiguity: an application to stock returns," Finance and Economics Discussion Series 2005-09, Board of Governors of the Federal Reserve System (U.S.).
    6. Li, Qi & Maasoumi, Esfandiar & Racine, Jeffrey S., 2009. "A nonparametric test for equality of distributions with mixed categorical and continuous data," Journal of Econometrics, Elsevier, vol. 148(2), pages 186-200, February.
    7. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    8. repec:wyi:journl:002087 is not listed on IDEAS
    9. repec:cte:werepe:we1211 is not listed on IDEAS
    10. Lei Jiang & Esfandiar Maasoumi & Jiening Pan & Ke Wu, 2018. "A test of general asymmetric dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 1026-1043, November.
    11. George Kapetanios, 2007. "A Test for Serial Dependence Using Neural Networks," Working Papers 609, Queen Mary University of London, School of Economics and Finance.
    12. Matilla-García, Mariano & Marín, Manuel Ruiz, 2010. "A new test for chaos and determinism based on symbolic dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 600-614, December.
    13. Cho, Jin Seo & White, Halbert, 2011. "Generalized runs tests for the IID hypothesis," Journal of Econometrics, Elsevier, vol. 162(2), pages 326-344, June.
    14. Yongmiao Hong & Xia Wang & Wenjie Zhang & Shouyang Wang, 2017. "An efficient integrated nonparametric entropy estimator of serial dependence," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 728-780, October.
    15. Wu, Ximing, 2010. "Exponential Series Estimator of multivariate densities," Journal of Econometrics, Elsevier, vol. 156(2), pages 354-366, June.
    16. Arthur Lewbel, 2000. "Asymptotic Trimming for Bounded Density Plug-in Estimators," Boston College Working Papers in Economics 479, Boston College Department of Economics, revised 30 Oct 2000.
    17. Cees Diks & Valentyn Panchenko, 2005. "Nonparametric Tests for Serial Independence Based on Quadratic Forms," Tinbergen Institute Discussion Papers 05-076/1, Tinbergen Institute.
    18. L. Bagnato & L. De Capitani & A. Punzo, 2016. "The Kullback–Leibler autodependogram," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2574-2594, October.
    19. Yongmiao Hong, 2013. "Serial Correlation and Serial Dependence," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    20. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    21. Taoufik Bouezmarni & Abderrahim Taamouti, 2014. "Nonparametric tests for conditional independence using conditional distributions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 697-719, December.
    22. Matilla-Garci­a, Mariano & Ruiz Mari­n, Manuel, 2008. "A non-parametric independence test using permutation entropy," Journal of Econometrics, Elsevier, vol. 144(1), pages 139-155, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:7:p:2524-2536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.