IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v202y2024ics0047259x24000083.html
   My bibliography  Save this article

Linearized maximum rank correlation estimation when covariates are functional

Author

Listed:
  • Xu, Wenchao
  • Zhang, Xinyu
  • Liang, Hua

Abstract

This paper extends the linearized maximum rank correlation (LMRC) estimation proposed by Shen et al. (2023) to the setting where the covariate is a function. However, this extension is nontrivial due to the difficulty of inverting the covariance operator, which may raise the ill-posed inverse problem, for which we integrate the functional principal component analysis to the LMRC procedure. The proposed estimator is robust to outliers in response and computationally efficient. We establish the rate of convergence of the proposed estimator, which is minimax optimal under certain smoothness assumptions. Furthermore, we extend the proposed estimation procedure to handle discretely observed functional covariates, including both sparse and dense sampling designs, and establish the corresponding rate of convergence. Simulation studies demonstrate that the proposed estimators outperform the other existing methods for some examples. Finally, we apply our method to a real data to illustrate its usefulness.

Suggested Citation

  • Xu, Wenchao & Zhang, Xinyu & Liang, Hua, 2024. "Linearized maximum rank correlation estimation when covariates are functional," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x24000083
    DOI: 10.1016/j.jmva.2024.105301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24000083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jason Abrevaya & Youngki Shin, 2011. "Rank estimation of partially linear index models," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 409-437, October.
    2. Youngki Shin & Zvezdomir Todorov, 2021. "Exact computation of maximum rank correlation estimator," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 589-607.
    3. F. Yao & E. Lei & Y. Wu, 2015. "Effective dimension reduction for sparse functional data," Biometrika, Biometrika Trust, vol. 102(2), pages 421-437.
    4. Cheng Chen & Shaojun Guo & Xinghao Qiao, 2022. "Functional Linear Regression: Dependence and Error Contamination," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 444-457, January.
    5. Abrevaya, Jason, 1999. "Computation of the maximum rank correlation estimator," Economics Letters, Elsevier, vol. 62(3), pages 279-285, March.
    6. Guohao Shen & Kani Chen & Jian Huang & Yuanyuan Lin, 2023. "Linearized maximum rank correlation estimation," Biometrika, Biometrika Trust, vol. 110(1), pages 187-203.
    7. Khan, Shakeeb, 2001. "Two-stage rank estimation of quantile index models," Journal of Econometrics, Elsevier, vol. 100(2), pages 319-355, February.
    8. Jing Lei, 2014. "Adaptive Global Testing for Functional Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 624-634, June.
    9. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    10. Imaizumi, Masaaki & Kato, Kengo, 2018. "PCA-based estimation for functional linear regression with functional responses," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 15-36.
    11. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    12. Khan, Shakeeb & Tamer, Elie, 2007. "Partial rank estimation of duration models with general forms of censoring," Journal of Econometrics, Elsevier, vol. 136(1), pages 251-280, January.
    13. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    14. Fan, Yanqin & Han, Fang & Li, Wei & Zhou, Xiao-Hua, 2020. "On rank estimators in increasing dimensions," Journal of Econometrics, Elsevier, vol. 214(2), pages 379-412.
    15. Abrevaya, Jason, 2003. "Pairwise-Difference Rank Estimation of the Transformation Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 437-447, July.
    16. Hang Zhou & Fang Yao & Huiming Zhang, 2023. "Functional linear regression for discretely observed data: from ideal to reality," Biometrika, Biometrika Trust, vol. 110(2), pages 381-393.
    17. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    18. Clara Happ & Sonja Greven, 2018. "Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 649-659, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youngki Shin & Zvezdomir Todorov, 2021. "Exact computation of maximum rank correlation estimator," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 589-607.
    2. Christoph Breunig & Stephan Martin, 2020. "Nonclassical Measurement Error in the Outcome Variable," Papers 2009.12665, arXiv.org, revised May 2021.
    3. Subbotin, Viktor, 2007. "Asymptotic and bootstrap properties of rank regressions," MPRA Paper 9030, University Library of Munich, Germany, revised 20 Mar 2008.
    4. Subbotin, Viktor, 2008. "Essays on the econometric theory of rank regressions," MPRA Paper 14086, University Library of Munich, Germany.
    5. Shakeeb Khan & Xiaoying Lan & Elie Tamer & Qingsong Yao, 2021. "Estimating High Dimensional Monotone Index Models by Iterative Convex Optimization1," Papers 2110.04388, arXiv.org, revised Feb 2023.
    6. Koen Jochmans, 2013. "Pairwise‐comparison estimation with non‐parametric controls," Econometrics Journal, Royal Economic Society, vol. 16(3), pages 340-372, October.
    7. Yanqin Fan & Fang Han & Wei Li & Xiao-Hua Zhou, 2019. "On rank estimators in increasing dimensions," Papers 1908.05255, arXiv.org.
    8. Bijwaard Govert E. & Ridder Geert & Woutersen Tiemen, 2013. "A Simple GMM Estimator for the Semiparametric Mixed Proportional Hazard Model," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 1-23, July.
    9. repec:spo:wpmain:info:hdl:2441/dambferfb7dfprc9m01h6f4h2 is not listed on IDEAS
    10. repec:hal:wpspec:info:hdl:2441/dambferfb7dfprc9m01h6f4h2 is not listed on IDEAS
    11. repec:spo:wpecon:info:hdl:2441/dambferfb7dfprc9m01h6f4h2 is not listed on IDEAS
    12. Fan, Yanqin & Han, Fang & Li, Wei & Zhou, Xiao-Hua, 2020. "On rank estimators in increasing dimensions," Journal of Econometrics, Elsevier, vol. 214(2), pages 379-412.
    13. Yu, Tao & Li, Pengfei & Chen, Baojiang & Yuan, Ao & Qin, Jing, 2023. "Maximum pairwise-rank-likelihood-based inference for the semiparametric transformation model," Journal of Econometrics, Elsevier, vol. 235(2), pages 454-469.
    14. repec:hal:spmain:info:hdl:2441/dambferfb7dfprc9m01h6f4h2 is not listed on IDEAS
    15. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2017. "Correction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 883-883, April.
    16. Gutknecht, Daniel, 2011. "Nonclassical Measurement Error in a Nonlinear (Duration) Model," Economic Research Papers 270763, University of Warwick - Department of Economics.
    17. Shakeeb Khan & Arnaud Maurel & Yichong Zhang, 2023. "Informational Content of Factor Structures in Simultaneous Binary Response Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 385-410, Emerald Group Publishing Limited.
    18. David Card & David Lee & Zhuan Pei & Andrea Weber, 2012. "Nonlinear Policy Rules and the Identification and Estimation of Causal Effects in a Generalized Regression Kink Design," NBER Working Papers 18564, National Bureau of Economic Research, Inc.
    19. Linjuan Zheng & Beiting Liang & Guochang Wang, 2024. "Adaptive slicing for functional slice inverse regression," Statistical Papers, Springer, vol. 65(5), pages 3261-3284, July.
    20. Caiyun Fan & Wenbin Lu & Rui Song & Yong Zhou, 2017. "Concordance-assisted learning for estimating optimal individualized treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1565-1582, November.
    21. Alfio Marazzi & Marina Valdora & Victor Yohai & Michael Amiguet, 2019. "A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 223-241, March.
    22. Zhou, He & Zou, Hui, 2024. "The nonparametric Box–Cox model for high-dimensional regression analysis," Journal of Econometrics, Elsevier, vol. 239(2).
    23. Xiao Song & Shuangge Ma, 2010. "Penalised variable selection with U-estimates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 499-515.
    24. Abrevaya, Jason, 1999. "Leapfrog estimation of a fixed-effects model with unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 93(2), pages 203-228, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:202:y:2024:i:c:s0047259x24000083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.