IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v40y2022i1p444-457.html
   My bibliography  Save this article

Functional Linear Regression: Dependence and Error Contamination

Author

Listed:
  • Cheng Chen
  • Shaojun Guo
  • Xinghao Qiao

Abstract

Functional linear regression is an important topic in functional data analysis. It is commonly assumed that samples of the functional predictor are independent realizations of an underlying stochastic process, and are observed over a grid of points contaminated by iid measurement errors. In practice, however, the dynamical dependence across different curves may exist and the parametric assumption on the error covariance structure could be unrealistic. In this article, we consider functional linear regression with serially dependent observations of the functional predictor, when the contamination of the predictor by the white noise is genuinely functional with fully nonparametric covariance structure. Inspired by the fact that the autocovariance function of observed functional predictors automatically filters out the impact from the unobservable noise term, we propose a novel autocovariance-based generalized method-of-moments estimate of the slope function. We also develop a nonparametric smoothing approach to handle the scenario of partially observed functional predictors. The asymptotic properties of the resulting estimators under different scenarios are established. Finally, we demonstrate that our proposed method significantly outperforms possible competing methods through an extensive set of simulations and an analysis of a public financial dataset.

Suggested Citation

  • Cheng Chen & Shaojun Guo & Xinghao Qiao, 2022. "Functional Linear Regression: Dependence and Error Contamination," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 444-457, January.
  • Handle: RePEc:taf:jnlbes:v:40:y:2022:i:1:p:444-457
    DOI: 10.1080/07350015.2020.1832503
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2020.1832503
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2020.1832503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    2. Hui Ding & Mei Yao & Riquan Zhang, 2023. "A new estimation in functional linear concurrent model with covariate dependent and noise contamination," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 965-989, November.
    3. Litimein, Ouahiba & Laksaci, Ali & Ait-Hennani, Larbi & Mechab, Boubaker & Rachdi, Mustapha, 2024. "Asymptotic normality of the local linear estimator of the functional expectile regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    4. Liu, Yirui & Qiao, Xinghao & Pei, Yulong & Wang, Liying, 2024. "Deep functional factor models: forecasting high-dimensional functional time series via Bayesian nonparametric factorization," LSE Research Online Documents on Economics 125587, London School of Economics and Political Science, LSE Library.
    5. Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
    6. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    7. Asma Ben Saber & Abderrazek Karoui, 2024. "On some stable linear functional regression estimators based on random projections," Statistical Papers, Springer, vol. 65(7), pages 4147-4178, September.
    8. Hengzhen Huang & Guangni Mo & Haiou Li & Hong-Bin Fang, 2022. "Representation Theorem and Functional CLT for RKHS-Based Function-on-Function Regressions," Mathematics, MDPI, vol. 10(14), pages 1-23, July.
    9. Xu, Wenchao & Zhang, Xinyu & Liang, Hua, 2024. "Linearized maximum rank correlation estimation when covariates are functional," Journal of Multivariate Analysis, Elsevier, vol. 202(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:1:p:444-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.