Functional Linear Regression: Dependence and Error Contamination
Author
Abstract
Suggested Citation
DOI: 10.1080/07350015.2020.1832503
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Asma Ben Saber & Abderrazek Karoui, 2024. "On some stable linear functional regression estimators based on random projections," Statistical Papers, Springer, vol. 65(7), pages 4147-4178, September.
- Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
- Hui Ding & Mei Yao & Riquan Zhang, 2023. "A new estimation in functional linear concurrent model with covariate dependent and noise contamination," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 965-989, November.
- Litimein, Ouahiba & Laksaci, Ali & Ait-Hennani, Larbi & Mechab, Boubaker & Rachdi, Mustapha, 2024. "Asymptotic normality of the local linear estimator of the functional expectile regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
- Liu, Yirui & Qiao, Xinghao & Pei, Yulong & Wang, Liying, 2024. "Deep functional factor models: forecasting high-dimensional functional time series via Bayesian nonparametric factorization," LSE Research Online Documents on Economics 125587, London School of Economics and Political Science, LSE Library.
- Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
- Hengzhen Huang & Guangni Mo & Haiou Li & Hong-Bin Fang, 2022. "Representation Theorem and Functional CLT for RKHS-Based Function-on-Function Regressions," Mathematics, MDPI, vol. 10(14), pages 1-23, July.
- Xu, Wenchao & Zhang, Xinyu & Liang, Hua, 2024. "Linearized maximum rank correlation estimation when covariates are functional," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:1:p:444-457. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.