IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/9030.html
   My bibliography  Save this paper

Asymptotic and bootstrap properties of rank regressions

Author

Listed:
  • Subbotin, Viktor

Abstract

The paper develops the bootstrap theory and extends the asymptotic theory of rank estimators, such as the Maximum Rank Correlation Estimator (MRC) of Han (1987), Monotone Rank Estimator (MR) of Cavanagh and Sherman (1998) or Pairwise-Difference Rank Estimators (PDR) of Abrevaya (2003). It is known that under general conditions these estimators have asymptotic normal distributions, but the asymptotic variances are difficult to find. Here we prove that the quantiles and the variances of the asymptotic distributions can be consistently estimated by the nonparametric bootstrap. We investigate the accuracy of inference based on the asymptotic approximation and the bootstrap, and provide bounds on the associated error. In the case of MRC and MR, the bound is a function of the sample size of order close to n^{-1/6}. The PDR estimators belong to a special subclass of rank estimators for which the bound is vanishing with the rate close to n^{-1/2}. The theoretical findings are illustrated with Monte-Carlo experiments and a real data example.

Suggested Citation

  • Subbotin, Viktor, 2007. "Asymptotic and bootstrap properties of rank regressions," MPRA Paper 9030, University Library of Munich, Germany, revised 20 Mar 2008.
  • Handle: RePEc:pra:mprapa:9030
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/9030/1/MPRA_paper_9030.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abrevaya, Jason, 1999. "Computation of the maximum rank correlation estimator," Economics Letters, Elsevier, vol. 62(3), pages 279-285, March.
    2. Myoung-jae Lee, 1999. "A Root-N Consistent Semiparametric Estimator for Related-Effect Binary Response Panel Data," Econometrica, Econometric Society, vol. 67(2), pages 427-434, March.
    3. Han, Aaron K., 1987. "A non-parametric analysis of transformations," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 191-209, July.
    4. Pollard, David, 1985. "New Ways to Prove Central Limit Theorems," Econometric Theory, Cambridge University Press, vol. 1(3), pages 295-313, December.
    5. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    6. Yoshihiko Nishiyama & Peter M. Robinson, 2005. "The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 73(3), pages 903-948, May.
    7. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    8. Khan, Shakeeb & Tamer, Elie, 2007. "Partial rank estimation of duration models with general forms of censoring," Journal of Econometrics, Elsevier, vol. 136(1), pages 251-280, January.
    9. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    10. Alberto Abadie & Guido W. Imbens, 2008. "On the Failure of the Bootstrap for Matching Estimators," Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
    11. Jason Abrevaya, 1999. "Rank estimation of a transformation model with observed truncation," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 292-305.
    12. Asparouhova, Elena & Golanski, Robert & Kasprzyk, Krzysztof & Sherman, Robert P. & Asparouhov, Tihomir, 2002. "Rank Estimators For A Transformation Model," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1099-1120, October.
    13. Songnian Chen, 2002. "Rank Estimation of Transformation Models," Econometrica, Econometric Society, vol. 70(4), pages 1683-1697, July.
    14. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644.
    15. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    16. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    17. Abrevaya, Jason, 2003. "Pairwise-Difference Rank Estimation of the Transformation Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 437-447, July.
    18. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    19. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    20. Arcones, Miguel A. & Giné, Evarist, 1994. "U-processes indexed by Vapnik-Cervonenkis classes of functions with applications to asymptotics and bootstrap of U-statistics with estimated parameters," Stochastic Processes and their Applications, Elsevier, vol. 52(1), pages 17-38, August.
    21. Abrevaya, Jason, 1999. "Leapfrog estimation of a fixed-effects model with unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 93(2), pages 203-228, December.
    22. Ichimura, H., 1991. "Semiparametric Least Squares (sls) and Weighted SLS Estimation of Single- Index Models," Papers 264, Minnesota - Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shakeeb Khan & Fu Ouyang & Elie Tamer, 2020. "Inference on Semiparametric Multinomial Response Models," Discussion Papers Series 627, School of Economics, University of Queensland, Australia.
    2. Abby Alpert & David Powell, 2014. "Estimating Intensive and Extensive Tax Responsiveness Do Older Workers Respond to Income Taxes?," Working Papers WR-987-1, RAND Corporation.
    3. Jeremy T. Fox, 2018. "Estimating matching games with transfers," Quantitative Economics, Econometric Society, vol. 9(1), pages 1-38, March.
    4. Fu Ouyang & Thomas Tao Yang, 2020. "Semiparametric Discrete Choice Models for Bundles," Discussion Papers Series 625, School of Economics, University of Queensland, Australia.
    5. Abby Alpert & David Powell, 2020. "Estimating Intensive And Extensive Tax Responsiveness," Economic Inquiry, Western Economic Association International, vol. 58(4), pages 1855-1873, October.
    6. Abby Alpert & David Powell, 2012. "Tax Elasticity of Labor Earnings for Older Individuals," Working Papers wp272, University of Michigan, Michigan Retirement Research Center.
    7. Suguru Otani, 2021. "Estimating Endogenous Coalitional Mergers: Merger Costs and Assortativeness of Size and Specialization," Papers 2108.12744, arXiv.org, revised Mar 2023.
    8. Arkadiusz Szydlowski, 2017. "Testing a parametric transformation model versus a nonparametric alternative," Discussion Papers in Economics 17/15, Division of Economics, School of Business, University of Leicester.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subbotin, Viktor, 2008. "Essays on the econometric theory of rank regressions," MPRA Paper 14086, University Library of Munich, Germany.
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    3. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    4. Abrevaya, Jason, 1999. "Leapfrog estimation of a fixed-effects model with unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 93(2), pages 203-228, December.
    5. Youngki Shin & Zvezdomir Todorov, 2021. "Exact computation of maximum rank correlation estimator," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 589-607.
    6. Shakeeb Khan & Elie Tamer, 2002. "Pairwise Comparison Estimation of Censored Transformation Models," RCER Working Papers 495, University of Rochester - Center for Economic Research (RCER).
    7. Khan, Shakeeb & Tamer, Elie, 2007. "Partial rank estimation of duration models with general forms of censoring," Journal of Econometrics, Elsevier, vol. 136(1), pages 251-280, January.
    8. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    9. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    10. Zhou, Yahong, 2008. "Semiparametric estimation of a nonstationary panel data transformation model under symmetry," Economics Letters, Elsevier, vol. 99(1), pages 107-110, April.
    11. Chen, Songnian, 2010. "Root-N-consistent estimation of fixed-effect panel data transformation models with censoring," Journal of Econometrics, Elsevier, vol. 159(1), pages 222-234, November.
    12. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "Estimation and Inference Procedures for Semiparametric Distribution Models with Varying Linear-Index," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 396-424, June.
    13. Yu, Tao & Li, Pengfei & Chen, Baojiang & Yuan, Ao & Qin, Jing, 2023. "Maximum pairwise-rank-likelihood-based inference for the semiparametric transformation model," Journal of Econometrics, Elsevier, vol. 235(2), pages 454-469.
    14. Shakeeb Khan & Xiaoying Lan & Elie Tamer & Qingsong Yao, 2021. "Estimating High Dimensional Monotone Index Models by Iterative Convex Optimization1," Papers 2110.04388, arXiv.org, revised Feb 2023.
    15. Xu, Wenchao & Zhang, Xinyu & Liang, Hua, 2024. "Linearized maximum rank correlation estimation when covariates are functional," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    16. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    17. Khan, Shakeeb, 2001. "Two-stage rank estimation of quantile index models," Journal of Econometrics, Elsevier, vol. 100(2), pages 319-355, February.
    18. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    19. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    20. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.

    More about this item

    Keywords

    Rank Estimators; Bootstrap; M-Estimators; U-Statistics; U-Processes;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:9030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.