IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i506p624-634.html
   My bibliography  Save this article

Adaptive Global Testing for Functional Linear Models

Author

Listed:
  • Jing Lei

Abstract

This article studies global testing of the slope function in functional linear regression models. A major challenge in functional global testing is to choose the dimension of projection when approximating the functional regression model by a finite dimensional multivariate linear regression model. We develop a new method that simultaneously tests the slope vectors in a sequence of functional principal components regression models. The sequence of models being tested is determined by the sample size and is an integral part of the testing procedure. Our theoretical analysis shows that the proposed method is uniformly powerful over a class of smooth alternatives when the signal to noise ratio exceeds the detection boundary. The methods and results reflect the deep connection between the functional linear regression model and the Gaussian sequence model. We also present an extensive simulation study and a real data example to illustrate the finite sample performance of our method. Supplementary materials for this article are available online.

Suggested Citation

  • Jing Lei, 2014. "Adaptive Global Testing for Functional Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 624-634, June.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:624-634
    DOI: 10.1080/01621459.2013.856794
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.856794
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.856794?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jianjun & Cui, Wenquan, 2022. "A new RKHS-based global testing for functional linear model," Statistics & Probability Letters, Elsevier, vol. 182(C).
    2. Christoph Breunig & Xiaohong Chen, 2020. "Adaptive, Rate-Optimal Hypothesis Testing in Nonparametric IV Models," Papers 2006.09587, arXiv.org, revised Jul 2024.
    3. Liu, Yuzi & Peng, Ling & Liu, Qing & Lian, Heng & Liu, Xiaohui, 2023. "Functional additive expectile regression in the reproducing kernel Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    4. Jadhav, Sneha & Ma, Shuangge, 2021. "An association test for functional data based on Kendall’s Tau," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    5. Lai, Tingyu & Zhang, Zhongzhan & Wang, Yafei, 2021. "A kernel-based measure for conditional mean dependence," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    6. Zhang, Xiaochen & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2022. "Subgroup analysis for high-dimensional functional regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    7. Zhiqiang Jiang & Zhensheng Huang & Jing Zhang, 2023. "Functional single-index composite quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(5), pages 595-603, July.
    8. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    9. Xu, Wenchao & Zhang, Xinyu & Liang, Hua, 2024. "Linearized maximum rank correlation estimation when covariates are functional," Journal of Multivariate Analysis, Elsevier, vol. 202(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:624-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.