IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v244y2024i1s030440762400174x.html
   My bibliography  Save this article

Tuning-parameter-free propensity score matching approach for causal inference under shape restriction

Author

Listed:
  • Liu, Yukun
  • Qin, Jing

Abstract

Propensity score matching (PSM) is a pseudo-experimental method that uses statistical techniques to construct an artificial control group by matching each treated unit with one or more untreated units of similar characteristics. To date, the problem of determining the optimal number of matches per unit, which plays an important role in PSM, has not been adequately addressed. We propose a tuning-parameter-free PSM approach to causal inference based on the nonparametric maximum-likelihood estimation of the propensity score under the monotonicity constraint. The estimated propensity score is piecewise constant, and therefore automatically groups data. Hence, our proposal is free of tuning parameters. The proposed causal effect estimator is asymptotically semiparametric efficient when the covariate is univariate or the outcome and the propensity score depend on the covariate through the same index X⊤β. We conclude that matching methods based on the propensity score alone cannot, in general, be efficient.

Suggested Citation

  • Liu, Yukun & Qin, Jing, 2024. "Tuning-parameter-free propensity score matching approach for causal inference under shape restriction," Journal of Econometrics, Elsevier, vol. 244(1).
  • Handle: RePEc:eee:econom:v:244:y:2024:i:1:s030440762400174x
    DOI: 10.1016/j.jeconom.2024.105829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440762400174X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tripathi, Gautam, 2000. "Local Semiparametric Efficiency Bounds Under Shape Restrictions," Econometric Theory, Cambridge University Press, vol. 16(5), pages 729-739, October.
    2. Severini, Thomas A. & Tripathi, Gautam, 2013. "Semiparametric Efficiency Bounds for Microeconometric Models: A Survey," Foundations and Trends(R) in Econometrics, now publishers, vol. 6(3-4), pages 163-397, December.
    3. Alberto Abadie & Guido W. Imbens, 2016. "Matching on the Estimated Propensity Score," Econometrica, Econometric Society, vol. 84, pages 781-807, March.
    4. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    5. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    6. Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
    7. Alberto Abadie & Guido W. Imbens, 2012. "A Martingale Representation for Matching Estimators," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 833-843, June.
    8. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    9. Guido W. Imbens, 2015. "Matching Methods in Practice: Three Examples," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 373-419.
    10. Fan, Yanqin & Han, Fang & Li, Wei & Zhou, Xiao-Hua, 2020. "On rank estimators in increasing dimensions," Journal of Econometrics, Elsevier, vol. 214(2), pages 379-412.
    11. Lee, Ying-Ying, 2018. "Efficient propensity score regression estimators of multivalued treatment effects for the treated," Journal of Econometrics, Elsevier, vol. 204(2), pages 207-222.
    12. Fadoua Balabdaoui & Piet Groeneboom & Kim Hendrickx, 2019. "Score estimation in the monotone single‐index model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 517-544, June.
    13. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    14. Lu Wang & Peisong Han, 2024. "Multiply robust estimation for average treatment effect among treated," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 8(1), pages 29-39, January.
    15. Tibor Neugebauer & Sascha F llbrunn, 2013. "Varying the number of bidders in the first-price sealed-bid auction: experimental evidence for the one-shot game," DEM Discussion Paper Series 13-10, Department of Economics at the University of Luxembourg.
    16. Zonghui Hu & Dean A. Follmann & Jing Qin, 2012. "Semiparametric Double Balancing Score Estimation for Incomplete Data With Ignorable Missingness," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 247-257, March.
    17. Khan, Shakeeb & Tamer, Elie, 2007. "Partial rank estimation of duration models with general forms of censoring," Journal of Econometrics, Elsevier, vol. 136(1), pages 251-280, January.
    18. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    19. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yihui He & Fang Han, 2023. "On propensity score matching with a diverging number of matches," Papers 2310.14142, arXiv.org, revised Nov 2023.
    2. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    3. Zeqin Liu & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Statistical Analysis and Evaluation of Macroeconomic Policies: A Selective Review," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201904, University of Kansas, Department of Economics, revised Mar 2019.
    4. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    5. Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019. "Specification tests for the propensity score," Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
    6. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    7. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    8. Sánchez-Braza, Antonio & Pablo-Romero, María del P., 2014. "Evaluation of property tax bonus to promote solar thermal systems in Andalusia (Spain)," Energy Policy, Elsevier, vol. 67(C), pages 832-843.
    9. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    10. Timothy B. Armstrong & Michal Kolesár, 2021. "Finite‐Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Econometrica, Econometric Society, vol. 89(3), pages 1141-1177, May.
    11. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Jan 2025.
    12. Ferraro, Paul J. & Miranda, Juan José, 2014. "The performance of non-experimental designs in the evaluation of environmental programs: A design-replication study using a large-scale randomized experiment as a benchmark," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 344-365.
    13. Cansino, José M. & Lopez-Melendo, Jaime & Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2013. "An economic evaluation of public programs for internationalization: The case of the Diagnostic program in Spain," Evaluation and Program Planning, Elsevier, vol. 41(C), pages 38-46.
    14. Fredrik Savje, 2019. "On the inconsistency of matching without replacement," Papers 1907.07288, arXiv.org, revised Jun 2021.
    15. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    16. Sokbae Lee & Yoon-Jae Whang, 2009. "Nonparametric Tests of Conditional Treatment Effects," Cowles Foundation Discussion Papers 1740, Cowles Foundation for Research in Economics, Yale University.
    17. Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    18. José M. Cansino & Antonio Sánchez-Braza & Nereyda Espinoza, 2018. "Evaluating the Impact of an Active Labour Market Policy on Employment: Short- and Long-Term Perspectives," Social Sciences, MDPI, vol. 7(4), pages 1-20, April.
    19. Lee, Ying-Ying, 2018. "Efficient propensity score regression estimators of multivalued treatment effects for the treated," Journal of Econometrics, Elsevier, vol. 204(2), pages 207-222.
    20. José I. Castillo-Manzano & Antonio Sánchez-Braza, 2011. "An Evaluation of the Establishment of a Taxi Flat Rate from City to Airport: The Case of Seville," Urban Studies, Urban Studies Journal Limited, vol. 48(9), pages 1909-1924, July.

    More about this item

    Keywords

    Average treatment effect on the treated; Pool adjacent violated algorithm; Propensity score matching estimators; Shape-restricted inference; Semiparametric efficiency;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:244:y:2024:i:1:s030440762400174x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.