IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i9p1805-1824.html
   My bibliography  Save this article

Nonparametric tests of independence between random vectors

Author

Listed:
  • Beran, R.
  • Bilodeau, M.
  • Lafaye de Micheaux, P.

Abstract

A nonparametric test of the mutual independence between many numerical random vectors is proposed. This test is based on a characterization of mutual independence defined from probabilities of half-spaces in a combinatorial formula of Möbius. As such, it is a natural generalization of tests of independence between univariate random variables using the empirical distribution function. If the number of vectors is p and there are n observations, the test is defined from a collection of processes Rn,A, where A is a subset of {1,...,p} of cardinality A>1, which are asymptotically independent and Gaussian. Without the assumption that each vector is one-dimensional with a continuous cumulative distribution function, any test of independence cannot be distribution free. The critical values of the proposed test are thus computed with the bootstrap which is shown to be consistent. Another similar test, with the same asymptotic properties, for the serial independence of a multivariate stationary sequence is also proposed. The proposed test works when some or all of the marginal distributions are singular with respect to Lebesgue measure. Moreover, in singular cases described in Section 4, the test inherits useful invariance properties from the general affine invariance property.

Suggested Citation

  • Beran, R. & Bilodeau, M. & Lafaye de Micheaux, P., 2007. "Nonparametric tests of independence between random vectors," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1805-1824, October.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:9:p:1805-1824
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00011-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deheuvels, Paul, 1981. "An asymptotic decomposition for multivariate distribution-free tests of independence," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 102-113, March.
    2. Bilodeau, M. & Lafaye de Micheaux, P., 2005. "A multivariate empirical characteristic function test of independence with normal marginals," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 345-369, August.
    3. Ghoudi, Kilani & Kulperger, Reg J. & Rémillard, Bruno, 2001. "A Nonparametric Test of Serial Independence for Time Series and Residuals," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 191-218, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zichen Zhao & Zhiqiang Wu & Shiqi Zhou & Wen Dong & Wei Gan & Yixuan Zou & Mo Wang, 2023. "Resident Effect Perception in Urban Spaces to Inform Urban Design Strategies," Land, MDPI, vol. 12(10), pages 1-24, October.
    2. Mercadier, Cécile & Roustant, Olivier & Genest, Christian, 2022. "Linking the Hoeffding–Sobol and Möbius formulas through a decomposition of Kuo, Sloan, Wasilkowski, and Woźniakowski," Statistics & Probability Letters, Elsevier, vol. 185(C).
    3. Helmut Herwartz & Simone Maxand, 2020. "Nonparametric tests for independence: a review and comparative simulation study with an application to malnutrition data in India," Statistical Papers, Springer, vol. 61(5), pages 2175-2201, October.
    4. Kojadinovic, Ivan & Holmes, Mark, 2009. "Tests of independence among continuous random vectors based on Cramr-von Mises functionals of the empirical copula process," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1137-1154, July.
    5. Nasri, Bouchra R., 2022. "Tests of serial dependence for multivariate time series with arbitrary distributions," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    6. Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    7. Jin, Ze & Matteson, David S., 2018. "Generalizing distance covariance to measure and test multivariate mutual dependence via complete and incomplete V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 304-322.
    8. Fan, Yanan & de Micheaux, Pierre Lafaye & Penev, Spiridon & Salopek, Donna, 2017. "Multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 189-210.
    9. Györfi, László & Walk, Harro, 2012. "Strongly consistent nonparametric tests of conditional independence," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1145-1150.
    10. Kojadinovic, Ivan, 2010. "Hierarchical clustering of continuous variables based on the empirical copula process and permutation linkages," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 90-108, January.
    11. Ivan Kojadinovic & Jun Yan, 2011. "Tests of serial independence for continuous multivariate time series based on a Möbius decomposition of the independence empirical copula process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 347-373, April.
    12. Kalemkerian, Juan & Fernández, Diego, 2020. "An independence test based on recurrence rates," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    13. Dehghan, Sakineh & Faridrohani, Mohammad Reza, 2024. "A data depth based nonparametric test of independence between two random vectors," Journal of Multivariate Analysis, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meintanis, Simos G. & Iliopoulos, George, 2008. "Fourier methods for testing multivariate independence," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1884-1895, January.
    2. Mercadier, Cécile & Roustant, Olivier & Genest, Christian, 2022. "Linking the Hoeffding–Sobol and Möbius formulas through a decomposition of Kuo, Sloan, Wasilkowski, and Woźniakowski," Statistics & Probability Letters, Elsevier, vol. 185(C).
    3. Kojadinovic, Ivan & Holmes, Mark, 2009. "Tests of independence among continuous random vectors based on Cramr-von Mises functionals of the empirical copula process," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1137-1154, July.
    4. Fan, Yanan & de Micheaux, Pierre Lafaye & Penev, Spiridon & Salopek, Donna, 2017. "Multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 189-210.
    5. Bilodeau, M. & Lafaye de Micheaux, P., 2005. "A multivariate empirical characteristic function test of independence with normal marginals," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 345-369, August.
    6. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2013. "On the estimation of Spearman’s rho and related tests of independence for possibly discontinuous multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 214-228.
    7. C Genest & J G Nešlehová & B Rémillard & O A Murphy, 2019. "Testing for independence in arbitrary distributions," Biometrika, Biometrika Trust, vol. 106(1), pages 47-68.
    8. Pycke, Jean-Renaud, 2003. "Multivariate extensions of the Anderson-Darling process," Statistics & Probability Letters, Elsevier, vol. 63(4), pages 387-399, July.
    9. Gautier Marti & Frank Nielsen & Philippe Donnat & S'ebastien Andler, 2016. "On clustering financial time series: a need for distances between dependent random variables," Papers 1603.07822, arXiv.org.
    10. Nasri, Bouchra R., 2022. "Tests of serial dependence for multivariate time series with arbitrary distributions," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    11. Ghislain Verdier, 2024. "Goodness-of-fit procedure for gamma processes," Computational Statistics, Springer, vol. 39(5), pages 2623-2650, July.
    12. Koning, Alex J. & Protasov, Vladimir, 2003. "Tail behaviour of Gaussian processes with applications to the Brownian pillow," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 370-397, November.
    13. Xing Zhang & Tat Y. Chan & Ying Xie, 2018. "Price Search and Periodic Price Discounts," Management Science, INFORMS, vol. 64(2), pages 495-510, February.
    14. Garratt, Anthony & Henckel, Timo & Vahey, Shaun P., 2023. "Empirically-transformed linear opinion pools," International Journal of Forecasting, Elsevier, vol. 39(2), pages 736-753.
    15. Helmut Herwartz & Simone Maxand, 2020. "Nonparametric tests for independence: a review and comparative simulation study with an application to malnutrition data in India," Statistical Papers, Springer, vol. 61(5), pages 2175-2201, October.
    16. Gourieroux, C. & Jasiak, J., 2008. "Dynamic quantile models," Journal of Econometrics, Elsevier, vol. 147(1), pages 198-205, November.
    17. Rémillard, Bruno & Scaillet, Olivier, 2009. "Testing for equality between two copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 377-386, March.
    18. Bakirov, Nail K. & Rizzo, Maria L. & Szekely, Gábor J., 2006. "A multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1742-1756, September.
    19. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    20. Florencia Leonardi & Matías Lopez‐Rosenfeld & Daniela Rodriguez & Magno T. F. Severino & Mariela Sued, 2021. "Independent block identification in multivariate time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 19-33, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:9:p:1805-1824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.