IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v119y2016icp45-54.html
   My bibliography  Save this article

Some results on change-point detection in cross-sectional dependence of multivariate data with changes in marginal distributions

Author

Listed:
  • Rohmer, Tom

Abstract

A non-parametric test is proposed for detecting changes in the dependence between the components of multivariate data, when changes in marginal distributions occur at known instants. Monte Carlo simulations have been carried out to illustrate the performance of the procedure.

Suggested Citation

  • Rohmer, Tom, 2016. "Some results on change-point detection in cross-sectional dependence of multivariate data with changes in marginal distributions," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 45-54.
  • Handle: RePEc:eee:stapro:v:119:y:2016:i:c:p:45-54
    DOI: 10.1016/j.spl.2016.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216301079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.06.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, J., 1994. "Stochastic Equicontinuity and Weak Convergence of Unbounded Sequential Empirical Proceses," Working papers 94-07, Massachusetts Institute of Technology (MIT), Department of Economics.
    2. Kojadinovic, Ivan & Segers, Johan & Yan, Jun, 2011. "Large-sample tests of extreme-value dependence for multivariate copulas," LIDAM Reprints ISBA 2011025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Inoue, Atsushi, 2001. "Testing For Distributional Change In Time Series," Econometric Theory, Cambridge University Press, vol. 17(1), pages 156-187, February.
    4. Kojadinovic, Jean D. & Segers, Johan & Yan, Yun, 2011. "Large-sample tests of extreme-value dependence for multivariate copulas," LIDAM Discussion Papers ISBA 2011012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Atsushi Inoue, "undated". "Testing Change in Time Series," Computing in Economics and Finance 1997 7, Society for Computational Economics.
    6. Segers, Johan, 2012. "Asymptotics of empirical copula processes under non-restrictive smoothness assumptions," LIDAM Reprints ISBA 2012009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    8. Bucher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," LIDAM Reprints ISBA 2014020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Holmes, Mark & Kojadinovic, Ivan & Quessy, Jean-François, 2013. "Nonparametric tests for change-point detection à la Gombay and Horváth," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 16-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nasri, Bouchra R. & Rémillard, Bruno N. & Bahraoui, Tarik, 2022. "Change-point problems for multivariate time series using pseudo-observations," Journal of Multivariate Analysis, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    2. Jean-François Quessy, 2019. "Consistent nonparametric tests for detecting gradual changes in the marginals and the copula of multivariate time series," Statistical Papers, Springer, vol. 60(3), pages 717-746, June.
    3. Bucher, Axel & Kojadinovic, Ivan, 2013. "A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing," LIDAM Discussion Papers ISBA 2013029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Nasri, Bouchra R. & Rémillard, Bruno N. & Bahraoui, Tarik, 2022. "Change-point problems for multivariate time series using pseudo-observations," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    5. Bucher, Axel & Segers, Johan, 2013. "Extreme value copula estimation based on block maxima of a multivariate stationary time series," LIDAM Discussion Papers ISBA 2013049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    7. Wied, Dominik & Dehling, Herold & van Kampen, Maarten & Vogel, Daniel, 2014. "A fluctuation test for constant Spearman’s rho with nuisance-free limit distribution," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 723-736.
    8. Rongrong Li & Lihua Xiong & Cong Jiang & Wenbin Li & Chengkai Liu, 2023. "Quantifying multivariate flood risk under nonstationary condition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1161-1187, March.
    9. Manner, Hans & Rodríguez, Gabriel & Stöckler, Florian, 2024. "A changepoint analysis of exchange rate and commodity price risks for Latin American stock markets," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1385-1403.
    10. Leonie Selk & Natalie Neumeyer, 2013. "Testing for a Change of the Innovation Distribution in Nonparametric Autoregression: The Sequential Empirical Process Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 770-788, December.
    11. Bücher, Axel & Ruppert, Martin, 2013. "Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 208-229.
    12. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    13. Corradi, Valentina & Swanson, Norman R., 2005. "Bootstrap specification tests for diffusion processes," Journal of Econometrics, Elsevier, vol. 124(1), pages 117-148, January.
    14. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    15. Dominik Wied & Matthias Arnold & Nicolai Bissantz & Daniel Ziggel, 2012. "A new fluctuation test for constant variances with applications to finance," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(8), pages 1111-1127, November.
    16. Rossi, Barbara & Sekhposyan, Tatevik, 2013. "Conditional predictive density evaluation in the presence of instabilities," Journal of Econometrics, Elsevier, vol. 177(2), pages 199-212.
    17. Mazo, Gildas & Girard, Stéphane & Forbes, Florence, 2015. "A class of multivariate copulas based on products of bivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 363-376.
    18. Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2013. "Detecting changes in cross-sectional dependence in multivariate time series," LIDAM Discussion Papers ISBA 2013051, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    20. Rossi, Barbara & Sekhposyan, Tatevik, 2019. "Alternative tests for correct specification of conditional predictive densities," Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:119:y:2016:i:c:p:45-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.