IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2793-d881773.html
   My bibliography  Save this article

Some Statistical Aspects of the Truncated Multivariate Skew- t Distribution

Author

Listed:
  • Raúl Alejandro Morán-Vásquez

    (Instituto de Matemáticas, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia
    These authors contributed equally to this work.)

  • Edwin Zarrazola

    (Instituto de Matemáticas, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia
    These authors contributed equally to this work.)

  • Daya K. Nagar

    (Instituto de Matemáticas, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia
    These authors contributed equally to this work.)

Abstract

The multivariate skew- t distribution plays an important role in statistics since it combines skewness with heavy tails, a very common feature in real-world data. A generalization of this distribution is the truncated multivariate skew- t distribution which contains the truncated multivariate t distribution and the truncated multivariate skew-normal distribution as special cases. In this article, we study several distributional properties of the truncated multivariate skew- t distribution involving affine transformations, marginalization, and conditioning. The generation of random samples from this distribution is described.

Suggested Citation

  • Raúl Alejandro Morán-Vásquez & Edwin Zarrazola & Daya K. Nagar, 2022. "Some Statistical Aspects of the Truncated Multivariate Skew- t Distribution," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2793-:d:881773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    2. Horrace, William C., 2005. "On ranking and selection from independent truncated normal distributions," Journal of Econometrics, Elsevier, vol. 126(2), pages 335-354, June.
    3. Reinaldo B. Arellano‐Valle & Adelchi Azzalini, 2006. "On the Unification of Families of Skew‐normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 561-574, September.
    4. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    5. Atif Avdović & Vesna Jevremović, 2022. "Quantile-Zone Based Approach to Normality Testing," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    6. Horrace, William C., 2005. "Some results on the multivariate truncated normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 209-221, May.
    7. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    8. Saralees Nadarajah, 2007. "A truncated bivariate inverted dirichlet distribution," Statistica, Department of Statistics, University of Bologna, vol. 67(2), pages 213-221.
    9. Cedric Flecher & Denis Allard & Philippe Naveau, 2010. "Truncated skew-normal distributions: moments, estimation by weighted moments and application to climatic data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 331-345.
    10. Galarza, Christian E. & Matos, Larissa A. & Castro, Luis M. & Lachos, Victor H., 2022. "Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raúl Alejandro Morán-Vásquez & Edwin Zarrazola & Daya K. Nagar, 2023. "Some Theoretical and Computational Aspects of the Truncated Multivariate Skew-Normal/Independent Distributions," Mathematics, MDPI, vol. 11(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galarza, Christian E. & Matos, Larissa A. & Castro, Luis M. & Lachos, Victor H., 2022. "Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Adcock, C.J., 2014. "Mean–variance–skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-Student distribution," European Journal of Operational Research, Elsevier, vol. 234(2), pages 392-401.
    3. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    4. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    5. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    7. Seokho Lee & Marc G. Genton & Reinaldo B. Arellano-Valle, 2010. "Perturbation of Numerical Confidential Data via Skew-t Distributions," Management Science, INFORMS, vol. 56(2), pages 318-333, February.
    8. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    9. C. J. Adcock, 2023. "The Linear Skew-t Distribution and Its Properties," Stats, MDPI, vol. 6(1), pages 1-30, February.
    10. Cabral, Celso Rômulo Barbosa & da-Silva, Cibele Queiroz & Migon, Helio S., 2014. "A dynamic linear model with extended skew-normal for the initial distribution of the state parameter," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 64-80.
    11. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    12. Antonio Canale & Euloge Clovis Kenne Pagui & Bruno Scarpa, 2016. "Bayesian modeling of university first-year students' grades after placement test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3015-3029, December.
    13. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    14. Padoan, Simone A., 2011. "Multivariate extreme models based on underlying skew-t and skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 977-991, May.
    15. Olcay Arslan, 2015. "Variance-mean mixture of the multivariate skew normal distribution," Statistical Papers, Springer, vol. 56(2), pages 353-378, May.
    16. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    17. Kahrari, F. & Rezaei, M. & Yousefzadeh, F. & Arellano-Valle, R.B., 2016. "On the multivariate skew-normal-Cauchy distribution," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 80-88.
    18. Reinaldo Arellano-Valle & Marc Genton, 2010. "An invariance property of quadratic forms in random vectors with a selection distribution, with application to sample variogram and covariogram estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(2), pages 363-381, April.
    19. Kim, Hyoung-Moon & Maadooliat, Mehdi & Arellano-Valle, Reinaldo B. & Genton, Marc G., 2016. "Skewed factor models using selection mechanisms," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 162-177.
    20. Oleg Badunenko & Daniel J. Henderson, 2024. "Production analysis with asymmetric noise," Journal of Productivity Analysis, Springer, vol. 61(1), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2793-:d:881773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.