IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i3ne2663.html
   My bibliography  Save this article

Likelihood‐based inference for spatiotemporal data with censored and missing responses

Author

Listed:
  • Katherine A. L. Valeriano
  • Victor H. Lachos
  • Marcos O. Prates
  • Larissa A. Matos

Abstract

This paper proposes an alternative method to deal with spatiotemporal data with censored and missing responses using the SAEM algorithm. This algorithm is a stochastic approximation of the widely used EM algorithm and is an important tool for models in which the E‐step does not have an analytic form. Besides the algorithm developed to estimate the model parameters from a likelihood‐based perspective, we present analytical expressions to compute the observed information matrix. Global influence measures are also developed and presented. Several simulation studies are conducted to examine the asymptotic properties of the SAEM estimates. The proposed method is illustrated by environmental data analysis. The computing codes are implemented in the new R package StempCens.

Suggested Citation

  • Katherine A. L. Valeriano & Victor H. Lachos & Marcos O. Prates & Larissa A. Matos, 2021. "Likelihood‐based inference for spatiotemporal data with censored and missing responses," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:3:n:e2663
    DOI: 10.1002/env.2663
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2663
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hong‐Tu Zhu & Sik‐Yum Lee, 2001. "Local influence for incomplete data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 111-126.
    2. Victor H. Lachos & Dipankar Bandyopadhyay & Dipak K. Dey, 2011. "Linear and Nonlinear Mixed-Effects Models for Censored HIV Viral Loads Using Normal/Independent Distributions," Biometrics, The International Biometric Society, vol. 67(4), pages 1594-1604, December.
    3. Ma, Chunsheng, 2003. "Spatio-temporal stationary covariance models," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 97-107, July.
    4. Zaida C. Quiroz & Marcos O. Prates & Håvard Rue, 2015. "A Bayesian approach to estimate the biomass of anchovies off the coast of Perú," Biometrics, The International Biometric Society, vol. 71(1), pages 208-217, March.
    5. Víctor H. Lachos & Larissa A. Matos & Thais S. Barbosa & Aldo M. Garay & Dipak K. Dey, 2017. "Influence diagnostics in spatial models with censored response," Environmetrics, John Wiley & Sons, Ltd., vol. 28(7), November.
    6. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galarza, Christian E. & Matos, Larissa A. & Castro, Luis M. & Lachos, Victor H., 2022. "Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matos, Larissa A. & Lachos, Victor H. & Balakrishnan, N. & Labra, Filidor V., 2013. "Influence diagnostics in linear and nonlinear mixed-effects models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 450-464.
    2. Matos, Larissa A. & Bandyopadhyay, Dipankar & Castro, Luis M. & Lachos, Victor H., 2015. "Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 104-117.
    3. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    4. Ma, Chunsheng, 2004. "Spatial autoregression and related spatio-temporal models," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 152-162, January.
    5. R.A.B. Assumpção & M.A. Uribe-Opazo & M. Galea, 2014. "Analysis of local influence in geostatistics using Student's t -distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2323-2341, November.
    6. Clécio da Silva Ferreira & Gilberto A. Paula & Gustavo C. Lana, 2022. "Estimation and diagnostic for partially linear models with first-order autoregressive skew-normal errors," Computational Statistics, Springer, vol. 37(1), pages 445-468, March.
    7. Shi, Lei & Lu, Jun & Zhao, Jianhua & Chen, Gemai, 2016. "Case deletion diagnostics for GMM estimation," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 176-191.
    8. Camila Zeller & Victor Lachos & Filidor Labra, 2014. "Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions," Statistical Papers, Springer, vol. 55(3), pages 671-690, August.
    9. Alejandra Tapia & Viviana Giampaoli & Víctor Leiva & Yuhlong Lio, 2020. "Data-Influence Analytics in Predictive Models Applied to Asthma Disease," Mathematics, MDPI, vol. 8(9), pages 1-19, September.
    10. Jussiane Nader Gonçalves & Wagner Barreto-Souza, 2020. "Flexible regression models for counts with high-inflation of zeros," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 71-95, April.
    11. Manuel Galea & Patricia Giménez, 2019. "Local influence diagnostics for the test of mean–variance efficiency and systematic risks in the capital asset pricing model," Statistical Papers, Springer, vol. 60(1), pages 293-312, February.
    12. K. Shuvo Bakar & Huidong Jin, 2018. "Spatio-temporal quantitative links between climatic extremes and population flows: a case study in the Murray-Darling Basin, Australia," Climatic Change, Springer, vol. 148(1), pages 139-153, May.
    13. Yangxin Huang & Tao Lu, 2017. "Bayesian inference on partially linear mixed-effects joint models for longitudinal data with multiple features," Computational Statistics, Springer, vol. 32(1), pages 179-196, March.
    14. Larissa A. Matos & Víctor H. Lachos & Tsung-I Lin & Luis M. Castro, 2019. "Heavy-tailed longitudinal regression models for censored data: a robust parametric approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 844-878, September.
    15. K. Shuvo Bakar, 2020. "Interpolation of daily rainfall data using censored Bayesian spatially varying model," Computational Statistics, Springer, vol. 35(1), pages 135-152, March.
    16. Robinson, P.M. & Vidal Sanz, J., 2006. "Modified Whittle estimation of multilateral models on a lattice," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1090-1120, May.
    17. Yuan Wang & Brian P. Hobbs & Jianhua Hu & Chaan S. Ng & Kim‐Anh Do, 2015. "Predictive classification of correlated targets with application to detection of metastatic cancer using functional CT imaging," Biometrics, The International Biometric Society, vol. 71(3), pages 792-802, September.
    18. Miryam S. Merk & Philipp Otto, 2022. "Estimation of the spatial weighting matrix for regular lattice data—An adaptive lasso approach with cross‐sectional resampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    19. Tata Subba Rao & Sourav Das & Georgi N. Boshnakov, 2014. "A Frequency Domain Approach For The Estimation Of Parameters Of Spatio-Temporal Stationary Random Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 357-377, July.
    20. Pebesma, Edzer & Bivand, Roger & Ribeiro, Paulo Justiniano, 2015. "Software for Spatial Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i01).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:3:n:e2663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.