IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v188y2022ics0047259x21001020.html
   My bibliography  Save this article

Multivariate normality test based on kurtosis with two-step monotone missing data

Author

Listed:
  • Kurita, Eri
  • Seo, Takashi

Abstract

This paper deals with a sample measure of multivariate kurtosis, which is used as a test statistic in multivariate normality testing problems. We define a new multivariate sample kurtosis measure to provide a multivariate normality test for data with a two-step monotone missing structure. Furthermore, we derive its expectation and variance using a perturbation method. To evaluate the accuracy of a normal approximation, we conducted a Monte Carlo simulation for certain parameters. Finally, we present a numerical example to illustrate the proposed procedure.

Suggested Citation

  • Kurita, Eri & Seo, Takashi, 2022. "Multivariate normality test based on kurtosis with two-step monotone missing data," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21001020
    DOI: 10.1016/j.jmva.2021.104824
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21001020
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104824?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & Gyorgy H. Terdik, 2021. "On Multivariate Skewness and Kurtosis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 607-644, August.
    2. Kollo, Tõnu, 2008. "Multivariate skewness and kurtosis measures with an application in ICA," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2328-2338, November.
    3. Tsukada, Shin-ichi, 2014. "Equivalence testing of mean vector and covariance matrix for multi-populations under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 183-196.
    4. Hao, Jian & Krishnamoorthy, K., 2001. "Inferences on a Normal Covariance Matrix and Generalized Variance with Monotone Missing Data," Journal of Multivariate Analysis, Elsevier, vol. 78(1), pages 62-82, July.
    5. Tomoya Yamada & Megan Romer & Donald Richards, 2015. "Kurtosis tests for multivariate normality with monotone incomplete data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 532-557, September.
    6. Srivastava, M. S., 1984. "A measure of skewness and kurtosis and a graphical method for assessing multivariate normality," Statistics & Probability Letters, Elsevier, vol. 2(5), pages 263-267, October.
    7. Ming Zhou & Yongzhao Shao, 2014. "A powerful test for multivariate normality," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 351-363, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsukada, Shin-ichi, 2024. "Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    2. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    3. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    4. Nobumichi Shutoh & Takahiro Nishiyama & Masashi Hyodo, 2017. "Bartlett correction to the likelihood ratio test for MCAR with two-step monotone sample," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(3), pages 184-199, August.
    5. Loperfido, Nicola, 2021. "Some theoretical properties of two kurtosis matrices, with application to invariant coordinate selection," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    6. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    7. Baillien, Jonas & Gijbels, Irène & Verhasselt, Anneleen, 2023. "A new distance based measure of asymmetry," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    8. Abdi, Me’raj & Madadi, Mohsen & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2021. "Family of mean-mixtures of multivariate normal distributions: Properties, inference and assessment of multivariate skewness," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    9. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & Gyorgy H. Terdik, 2021. "On Multivariate Skewness and Kurtosis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 607-644, August.
    10. Balakrishnan, N. & Scarpa, Bruno, 2012. "Multivariate measures of skewness for the skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 73-87, February.
    11. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    12. Baishuai Zuo & Narayanaswamy Balakrishnan & Chuancun Yin, 2023. "An analysis of multivariate measures of skewness and kurtosis of skew-elliptical distributions," Papers 2311.18176, arXiv.org.
    13. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    14. Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.
    15. Wangli Xu & Yanwen Li & Dawo Song, 2013. "Testing normality in mixed models using a transformation method," Statistical Papers, Springer, vol. 54(1), pages 71-84, February.
    16. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    17. Fiorentini, Gabriele & Planas, Christophe & Rossi, Alessandro, 2016. "Skewness and kurtosis of multivariate Markov-switching processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 153-159.
    18. Hanke, Michael & Penev, Spiridon & Schief, Wolfgang & Weissensteiner, Alex, 2017. "Random orthogonal matrix simulation with exact means, covariances, and multivariate skewness," European Journal of Operational Research, Elsevier, vol. 263(2), pages 510-523.
    19. Nizar Allouch & Arkadi Predtetchinski, 2008. "On the non-emptiness of the fuzzy core," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(2), pages 203-210, June.
    20. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x21001020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.