IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v186y2021ics0047259x21000816.html
   My bibliography  Save this article

Efron’s asymptotic monotonicity property in the Gaussian stable domain of attraction

Author

Listed:
  • Denuit, Michel
  • Robert, Christian Y.

Abstract

In Efron (1965), Efron studied the stochastic increasingness of the vector of independent random variables entering a sum, given the value of the sum. Precisely, he proved that log-concavity for the distributions of the random variables ensures that the vector becomes larger (in the sense of the usual multivariate stochastic order) when the sum is known to increase. This result is known as Efron’s “monotonicity property”. Under the condition that the random variables entering in the sum have density functions with bounded second derivatives, we investigate whether Efron’s monotonicity property generalizes when sums involve a large number of terms to which a central-limit theorem applies.

Suggested Citation

  • Denuit, Michel & Robert, Christian Y., 2021. "Efron’s asymptotic monotonicity property in the Gaussian stable domain of attraction," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:jmvana:v:186:y:2021:i:c:s0047259x21000816
    DOI: 10.1016/j.jmva.2021.104803
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denuit, Michel & Dhaene, Jan, 2012. "Convex order and comonotonic conditional mean risk sharing," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 265-270.
    2. Vali Asimit & Liang Peng & Ruodu Wang & Alex Yu, 2019. "An efficient approach to quantile capital allocation and sensitivity analysis," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1131-1156, October.
    3. Takaaki Koike & Mihoko Minami, 2019. "Estimation of risk contributions with MCMC," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1579-1597, September.
    4. Denuit, Michel & Robert, Christian Y., 2021. "From risk sharing to pure premium for a large number of heterogeneous losses," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 116-126.
    5. Takaaki Koike & Mihoko Minami, 2017. "Estimation of Risk Contributions with MCMC," Papers 1702.03098, arXiv.org, revised Jan 2019.
    6. Denuit, Michel & Robert, Christian Y., 2021. "From risk sharing to pure premium for a large number of heterogeneous losses," LIDAM Reprints ISBA 2021001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denuit, Michel & Robert, Christian Y., 2023. "From risk reduction to risk elimination by conditional mean risk sharing of independent losses," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 46-59.
    2. Denuit, Michel & Robert, Christian Y., 2022. "Dynamic conditional mean risk sharing in the compound Poisson surplus model," LIDAM Discussion Papers ISBA 2022034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Denuit, Michel & Robert, Christian Y., 2023. "Conditional mean risk sharing of losses at occurrence time in the compound Poisson surplus model," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 23-32.
    4. Denuit, Michel & Dhaene, Jan & Ghossoub, Mario & Robert, Christian Y., 2023. "Comonotonicity and Pareto Optimality, with Application to Collaborative Insurance," LIDAM Discussion Papers ISBA 2023005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Denuit, Michel & Robert, Christian Y., 2023. "Conditional mean risk sharing of independent discrete losses in large pools," LIDAM Discussion Papers ISBA 2023010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denuit, Michel & Robert, Christian Y., 2021. "Stop-loss protection for a large P2P insurance pool," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 210-233.
    2. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    3. Fallou Niakh, 2023. "A fixed point approach for computing actuarially fair Pareto optimal risk-sharing rules," Papers 2303.05421, arXiv.org, revised Jul 2023.
    4. Michel Denuit & Christian Y. Robert, 2021. "Risk sharing under the dominant peer‐to‐peer property and casualty insurance business models," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(2), pages 181-205, June.
    5. Michel Denuit & Jan Dhaene & Christian Y. Robert, 2022. "Risk‐sharing rules and their properties, with applications to peer‐to‐peer insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 615-667, September.
    6. Koike, Takaaki & Saporito, Yuri & Targino, Rodrigo, 2022. "Avoiding zero probability events when computing Value at Risk contributions," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 173-192.
    7. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    8. Denuit, Michel & Robert, Christian Y., 2023. "From risk reduction to risk elimination by conditional mean risk sharing of independent losses," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 46-59.
    9. Koike, Takaaki & Hofert, Marius, 2021. "Modality for scenario analysis and maximum likelihood allocation," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 24-43.
    10. Takaaki Koike & Marius Hofert, 2020. "Modality for Scenario Analysis and Maximum Likelihood Allocation," Papers 2005.02950, arXiv.org, revised Nov 2020.
    11. Runhuan Feng & Chongda Liu & Stephen Taylor, 2023. "Peer-to-peer risk sharing with an application to flood risk pooling," Annals of Operations Research, Springer, vol. 321(1), pages 813-842, February.
    12. Thomas Bernhardt & Ge Qu, 2021. "Wealth heterogeneity in a closed pooled annuity fund," Papers 2110.13467, arXiv.org, revised Aug 2022.
    13. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    14. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    15. Chateauneuf, Alain & Mostoufi, Mina & Vyncke, David, 2015. "Multivariate risk sharing and the derivation of individually rational Pareto optima," Mathematical Social Sciences, Elsevier, vol. 74(C), pages 73-78.
    16. Denuit, Michel & Hieber, Peter & Robert, Christian Y., 2021. "Mortality credits within large survivor funds," LIDAM Discussion Papers ISBA 2021038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. repec:ipg:wpaper:2014-074 is not listed on IDEAS
    18. Denuit, Michel, 2019. "Size-biased transform and conditional mean risk sharing, with application to P2P insurance and tontines," LIDAM Discussion Papers ISBA 2019010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Denuit, Michel & Robert, Christian Y., 2020. "Conditional tail expectation decomposition and conditional mean risk sharing for dependent and conditionally independent risks," LIDAM Discussion Papers ISBA 2020018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Denuit, Michel & Robert, Christian Y., 2021. "Risk sharing under the dominant peer-to-peer property and casualty insurance business models," LIDAM Discussion Papers ISBA 2021001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. John A. Major & Stephen J. Mildenhall, 2020. "Pricing and Capital Allocation for Multiline Insurance Firms With Finite Assets in an Imperfect Market," Papers 2008.12427, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:186:y:2021:i:c:s0047259x21000816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.