IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v26y2024i4d10.1007_s11009-024-10106-w.html
   My bibliography  Save this article

Conditional Mean Risk Sharing of Independent Discrete Losses in Large Pools

Author

Listed:
  • Michel Denuit

    (Louvain Institute of Data Analysis and Modeling - LIDAM, UCLouvain)

  • Christian Y. Robert

    (CREST - Center for Research in Economics and Statistics, ENSAE)

Abstract

This paper considers a risk sharing scheme of independent discrete losses that combines risk retention at individual level, risk transfer for too expensive losses and risk pooling for the middle layer. This ensures that pooled losses can be considered as being uniformly bounded. We study the no-sabotage requirement and diversification effects when the conditional mean risk-sharing rule is applied to allocate pooled losses. The no-sabotage requirement is equivalent to Efron’s monotonicity property for conditional expectations, which is known to hold under log-concavity. Elementary proofs of this result for discrete losses are provided for finite population pools. The no-sabotage requirement and diversification effects are then examined within large pools. It is shown that Efron’s monotonicity property holds asymptotically and that risk can be eliminated under fairly general conditions which are fulfilled in applications.

Suggested Citation

  • Michel Denuit & Christian Y. Robert, 2024. "Conditional Mean Risk Sharing of Independent Discrete Losses in Large Pools," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-22, December.
  • Handle: RePEc:spr:metcap:v:26:y:2024:i:4:d:10.1007_s11009-024-10106-w
    DOI: 10.1007/s11009-024-10106-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-024-10106-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-024-10106-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:26:y:2024:i:4:d:10.1007_s11009-024-10106-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.