IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v186y2021ics0047259x21000634.html
   My bibliography  Save this article

Block-band behavior of spatial correlations: An analytical asymptotic study in a spatial exponential family data setup

Author

Listed:
  • Sutradhar, Brajendra C.

Abstract

There is a long history of spatial regression analysis where it is important to accommodate the spatial correlations among the responses from neighboring locations for any valid inferences. Among numerous modeling approaches, the so-called spatial auto-regression (SAR) model in a linear setup, and the conditional auto-regression (CAR) model in a binary setup, are widely used. For spatial binary analysis, there exists two other competitive approaches, namely the bivariate probit models (BPM) based composite likelihood approach using local lattices; and a ‘Working’ correlations based QL (quasi-likelihood) (WCQL) approach. These correlation models, however, fail to accommodate both within and between correlations among spatial families, where a spatial family is naturally formed within a threshold distance of a selected location, and the member locations between two neighboring families may also be correlated. In this paper, we exploit this latter two-ways, within and between correlations among spatial families and develop a unified correlation model for all exponential family based such as linear, count or binary data. We further exploit the proposed correlation structure based generalized quasi-likelihood (GQL) and method of moments (MM) approaches for model parameters estimation. As far as the estimation properties are concerned, because in practice one encounters a large spatial sample, we make sure that the proposed GQL and MM estimators are consistent.

Suggested Citation

  • Sutradhar, Brajendra C., 2021. "Block-band behavior of spatial correlations: An analytical asymptotic study in a spatial exponential family data setup," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:jmvana:v:186:y:2021:i:c:s0047259x21000634
    DOI: 10.1016/j.jmva.2021.104785
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sutradhar, Brajendra C. & Rao, R. Prabhakar, 2001. "On Marginal Quasi-Likelihood Inference in Generalized Linear Mixed Models," Journal of Multivariate Analysis, Elsevier, vol. 76(1), pages 1-34, January.
    2. Hensley H Mariathas & Brajendra C Sutradhar, 2016. "Variable Family Size Based Spatial Moving Correlations Model," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 1-38, May.
    3. Michael L. Stein & Zhiyi Chi & Leah J. Welty, 2004. "Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 275-296, May.
    4. Thomas R. Ten Have & Alfredo Morabia, 1999. "Mixed Effects Models with Bivariate and Univariate Association Parameters for Longitudinal Bivariate Binary Response Data," Biometrics, The International Biometric Society, vol. 55(1), pages 85-93, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brajendra C. Sutradhar & R. Prabhakar Rao, 2023. "Asymptotic Inferences in a Multinomial Logit Mixed Model for Spatial Categorical Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 885-930, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brajendra C. Sutradhar & R. Prabhakar Rao, 2023. "Asymptotic Inferences in a Multinomial Logit Mixed Model for Spatial Categorical Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 885-930, February.
    2. Brajendra C. Sutradhar, 2023. "Regression analysis for exponential family data in a finite population setup using two-stage cluster sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 425-462, June.
    3. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    4. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    5. Yan Chen & Youran Qi & Qing Liu & Peter Chien, 2018. "Sequential sampling enhanced composite likelihood approach to estimation of social intercorrelations in large-scale networks," Quantitative Marketing and Economics (QME), Springer, vol. 16(4), pages 409-440, December.
    6. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    7. Christian Gouriéroux & Alain Monfort & Eric Renault, 2017. "Consistent Pseudo-Maximum Likelihood Estimators," Annals of Economics and Statistics, GENES, issue 125-126, pages 187-218.
    8. Lucia Paci & Alan E. Gelfand & and María Asunción Beamonte & Pilar Gargallo & Manuel Salvador, 2020. "Spatial hedonic modelling adjusted for preferential sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 169-192, January.
    9. Magnussen, Steen & Reeves, Rob, 2008. "A method for bias-reduction of sample-based MLE of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 103-111, September.
    10. Brajendra C. Sutradhar, 2021. "An Overview on Econometric Models for Linear Spatial Panel Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 206-244, February.
    11. Brajendra C. Sutradhar, 2022. "Multinomial Logistic Mixed Models for Clustered Categorical Data in a Complex Survey Sampling Setup," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 743-789, August.
    12. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    13. Caragea, Petruta C. & Smith, Richard L., 2007. "Asymptotic properties of computationally efficient alternative estimators for a class of multivariate normal models," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1417-1440, August.
    14. D. Todem & Y. Zhang & A. Ismail & W. Sohn, 2010. "Random effects regression models for count data with excess zeros in caries research," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(10), pages 1661-1679.
    15. Chen, Kun & Chan, Ngai Hang & Yau, Chun Yip & Hu, Jie, 2023. "Penalized Whittle likelihood for spatial data," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    16. repec:cep:stiecm:/2013/568 is not listed on IDEAS
    17. Delgado, Miguel A. & Robinson, Peter M., 2015. "Non-nested testing of spatial correlation," Journal of Econometrics, Elsevier, vol. 187(1), pages 385-401.
    18. Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
    19. Furrer, Reinhard & Bachoc, François & Du, Juan, 2016. "Asymptotic properties of multivariate tapering for estimation and prediction," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 177-191.
    20. Morales-Oñate, Víctor & Crudu, Federico & Bevilacqua, Moreno, 2021. "Blockwise Euclidean likelihood for spatio-temporal covariance models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 176-201.
    21. Si Cheng & Bledar A. Konomi & Georgios Karagiannis & Emily L. Kang, 2024. "Recursive nearest neighbor co‐kriging models for big multi‐fidelity spatial data sets," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:186:y:2021:i:c:s0047259x21000634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.