IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v40y1992i2p244-261.html
   My bibliography  Save this article

Quadratic discriminant functions with constraints on the covariance matrices: Some asymptotic results

Author

Listed:
  • Flury, Bernhard W.
  • Schmid, Martin J.

Abstract

In multivariate discrimination of two normal populations, the optimal classification procedure is based on the quadratic discriminant function. We investigate asymptotic properties of this function if the covariance matrices of the two populations are estimated under the following four models; (i) arbitrary covariance matrices; (ii) common principal components, that is, equality of the eigenvectors of both covariance matrices; (iii) proportional covariance matrices; and (iv) identical covariance matrices. It is shown that using a restricted model, provided that it is correct, often yields smaller asymptotic variances of discriminant function coefficients than the usual quadratic discriminant approach with no constraints on the covariance matrices. In particular, the proportional model appears to provide an attractive compromise between linear and ordinary quadratic discrimination.

Suggested Citation

  • Flury, Bernhard W. & Schmid, Martin J., 1992. "Quadratic discriminant functions with constraints on the covariance matrices: Some asymptotic results," Journal of Multivariate Analysis, Elsevier, vol. 40(2), pages 244-261, February.
  • Handle: RePEc:eee:jmvana:v:40:y:1992:i:2:p:244-261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(92)90025-B
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
    2. Xu, Kai & Tian, Yan & He, Daojiang, 2021. "A high dimensional nonparametric test for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. Graciela Boente & Frank Critchley & Liliana Orellana, 2007. "Influence functions of two families of robust estimators under proportional scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 295-327, February.
    4. Bernhard Flury & Martin Schmid & A. Narayanan, 1994. "Error rates in quadratic discrimination with constraints on the covariance matrices," Journal of Classification, Springer;The Classification Society, vol. 11(1), pages 101-120, March.
    5. Neuenschwander, Beat E. & Flury, Bernard D., 2000. "Common Principal Components for Dependent Random Vectors," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 163-183, November.
    6. Bianco, Ana & Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2008. "Robust discrimination under a hierarchy on the scatter matrices," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1332-1357, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:40:y:1992:i:2:p:244-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.