IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i3p405-421.html
   My bibliography  Save this article

Weighted-mean trimming of multivariate data

Author

Listed:
  • Dyckerhoff, Rainer
  • Mosler, Karl

Abstract

A general notion of trimmed regions for empirical distributions in d-space is introduced. The regions are called weighted-mean trimmed regions. They are continuous in the data as well as in the trimming parameter. Further, these trimmed regions have many other attractive properties. In particular they are subadditive and monotone which makes it possible to construct multivariate measures of risk based on these regions. Special cases include the zonoid trimming and the ECH (expected convex hull) trimming. These regions can be exactly calculated for any dimension. Finally, the notion of weighted-mean trimmed regions extends to probability distributions in d-space, and a law of large numbers applies.

Suggested Citation

  • Dyckerhoff, Rainer & Mosler, Karl, 2011. "Weighted-mean trimming of multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 405-421, March.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:3:p:405-421
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00208-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ignacio Cascos & Ilya Molchanov, 2007. "Multivariate risks and depth-trimmed regions," Finance and Stochastics, Springer, vol. 11(3), pages 373-397, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dyckerhoff, Rainer & Mosler, Karl, 2012. "Weighted-mean regions of a probability distribution," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 318-325.
    2. Cascos, Ignacio & Ochoa, Maicol, 2021. "Expectile depth: Theory and computation for bivariate datasets," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. Cascos, Ignacio & López-Díaz, Miguel, 2012. "Trimmed regions induced by parameters of a probability," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 306-318.
    4. Walter Krämer, 2016. "Walter Krämer: Interview mit Karl Mosler," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(1), pages 63-71, February.
    5. Aubin, Jean-Baptiste & Gannaz, Irène & Leoni, Samuela & Rolland, Antoine, 2022. "Deepest voting: A new way of electing," Mathematical Social Sciences, Elsevier, vol. 116(C), pages 1-16.
    6. Bazovkin, Pavel & Mosler, Karl, 2011. "Stochastic linear programming with a distortion risk constraint," Discussion Papers in Econometrics and Statistics 6/11, University of Cologne, Institute of Econometrics and Statistics.
    7. Karl Mosler, 2023. "Representative endowments and uniform Gini orderings of multi-attribute welfare," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 233-250, March.
    8. Bazovkin, Pavel & Mosler, Karl, 2012. "An Exact Algorithm for Weighted-Mean Trimmed Regions in Any Dimension," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i13).
    9. Pavel Bazovkin & Karl Mosler, 2015. "A general solution for robust linear programs with distortion risk constraints," Annals of Operations Research, Springer, vol. 229(1), pages 103-120, June.
    10. Liu, Xiaohui & Rahman, Jafer & Luo, Shihua, 2019. "Generalized and robustified empirical depths for multivariate data," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 70-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo, Yijun & Lai, Shaoyong, 2011. "Exact computation of bivariate projection depth and the Stahel-Donoho estimator," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1173-1179, March.
    2. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    3. Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
    4. Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.
    5. Ra'ul Torres & Rosa E. Lillo & Henry Laniado, 2015. "A Directional Multivariate Value at Risk," Papers 1502.00908, arXiv.org.
    6. Wei, Linxiao & Hu, Yijun, 2014. "Coherent and convex risk measures for portfolios with applications," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 114-120.
    7. Ignacio Cascos & Ilya Molchanov, 2013. "Multivariate risk measures: a constructive approach based on selections," Papers 1301.1496, arXiv.org, revised Jul 2016.
    8. Zachary Feinstein & Birgit Rudloff, 2013. "A comparison of techniques for dynamic multivariate risk measures," Papers 1305.2151, arXiv.org, revised Jan 2015.
    9. Liu, Xiaohui & Rahman, Jafer & Luo, Shihua, 2019. "Generalized and robustified empirical depths for multivariate data," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 70-79.
    10. Ilya Molchanov & Anja Muhlemann, 2019. "Nonlinear expectations of random sets," Papers 1903.04901, arXiv.org.
    11. Cousin, Areski & Di Bernardino, Elena, 2014. "On multivariate extensions of Conditional-Tail-Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 272-282.
    12. Maume-Deschamps Véronique & Rullière Didier & Said Khalil, 2017. "Multivariate extensions of expectiles risk measures," Dependence Modeling, De Gruyter, vol. 5(1), pages 20-44, January.
    13. Mosler, Karl & Lange, Tatjana & Bazovkin, Pavel, 2009. "Computing zonoid trimmed regions of dimension d>2," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2500-2510, May.
    14. Torres, Raúl & Lillo, Rosa E. & Laniado, Henry, 2015. "A directional multivariate value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 111-123.
    15. Areski Cousin & Elena Di Bernardino, 2013. "On Multivariate Extensions of Conditional-Tail-Expectation," Working Papers hal-00877386, HAL.
    16. Pavel Bazovkin & Karl Mosler, 2015. "A general solution for robust linear programs with distortion risk constraints," Annals of Operations Research, Springer, vol. 229(1), pages 103-120, June.
    17. Bazovkin, Pavel & Mosler, Karl, 2012. "An Exact Algorithm for Weighted-Mean Trimmed Regions in Any Dimension," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i13).
    18. Molchanov, Ilya, 2013. "Multivariate risk measures : a constructive approach based on selections," DES - Working Papers. Statistics and Econometrics. WS ws130101, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Michele, Carlo de & Laniado Rodas, Henry, 2016. "Directional multivariate extremes in environmental phenomena," DES - Working Papers. Statistics and Econometrics. WS 23419, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Ilya Molchanov & Anja Mühlemann, 2021. "Nonlinear expectations of random sets," Finance and Stochastics, Springer, vol. 25(1), pages 5-41, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:3:p:405-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.