IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v55y2001i1p39-44.html
   My bibliography  Save this article

A note on multivariate M-quantiles

Author

Listed:
  • Breckling, Jens
  • Kokic, Philip
  • Lübke, Oliver

Abstract

The extension of M-quantiles to a multivariate setting was originally introduced by Breckling and Chambers (Biometrika 75 (4) (1988) 761). In certain situations, their definition does not produce intuitive results. We present an alternative definition that overcomes these shortcomings.

Suggested Citation

  • Breckling, Jens & Kokic, Philip & Lübke, Oliver, 2001. "A note on multivariate M-quantiles," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 39-44, November.
  • Handle: RePEc:eee:stapro:v:55:y:2001:i:1:p:39-44
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00125-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Averous, Jean & Meste, Michel, 1997. "Median Balls: An Extension of the Interquantile Intervals to Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 222-241, November.
    2. Kokic, Philip, et al, 1997. "A Measure of Production Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 445-451, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    2. Cascos, Ignacio & Ochoa, Maicol, 2021. "Expectile depth: Theory and computation for bivariate datasets," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. repec:cte:wsrepe:28434 is not listed on IDEAS
    4. Agarwal, Gaurav & Tu, Wei & Sun, Ying & Kong, Linglong, 2022. "Flexible quantile contour estimation for multivariate functional data: Beyond convexity," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    2. De Novellis, G. & Musile Tanzi, P. & Ranalli, M.G. & Stanghellini, E., 2024. "Leveraged finance exposure in the banking system: Systemic risk and interconnectedness," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    3. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    4. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2023. "Extreme expectile estimation for short-tailed data, with an application to market risk assessment," TSE Working Papers 23-1414, Toulouse School of Economics (TSE), revised May 2024.
    5. Cartone, Alfredo & Postiglione, Paolo & Hewings, Geoffrey J.D., 2021. "Does economic convergence hold? A spatial quantile analysis on European regions," Economic Modelling, Elsevier, vol. 95(C), pages 408-417.
    6. Francesco Schirripa Spagnolo & Nicola Salvati & Antonella D’Agostino & Ides Nicaise, 2020. "The use of sampling weights in M‐quantile random‐effects regression: an application to Programme for International Student Assessment mathematics scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 991-1012, August.
    7. Vinciotti Veronica & Yu Keming, 2009. "M-quantile Regression Analysis of Temporal Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-22, September.
    8. Marchetti, Stefano & Tzavidis, Nikos & Pratesi, Monica, 2012. "Non-parametric bootstrap mean squared error estimation for M-quantile estimators of small area averages, quantiles and poverty indicators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2889-2902.
    9. G. De Novellis & M. Doretti & G. E. Montanari & M. G. Ranalli & N. Salvati, 2024. "Performance evaluation of nursing homes using finite mixtures of logistic models and M-quantile regression for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 753-781, July.
    10. Giulia Romano & Nicola Salvati & Andrea Guerrini, 2014. "Factors Affecting Water Utility Companies’ Decision to Promote the Reduction of Household Water Consumption," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5491-5505, December.
    11. Abdelaati Daouia & Simone A. Padoan & Gilles Stupfler, 2024. "Extreme expectile estimation for short-tailed data," Post-Print hal-04672516, HAL.
    12. Stefano Marchetti & Caterina Giusti & Nicola Salvati & Monica Pratesi, 2017. "Small area estimation based on M-quantile models in presence of outliers in auxiliary variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 531-555, November.
    13. Cartone, Alfredo & Di Battista, Luca & Postiglione, Paolo, 2024. "A new approach for measuring poverty or social exclusion reduction in European NUTS 2 regions," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    14. Dabo-Niang, Sophie & Ferraty, Frederic & Vieu, Philippe, 2007. "On the using of modal curves for radar waveforms classification," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4878-4890, June.
    15. Belzunce, F. & Castano, A. & Olvera-Cervantes, A. & Suarez-Llorens, A., 2007. "Quantile curves and dependence structure for bivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5112-5129, June.
    16. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024. "Extreme expectile estimation for short-tailed data," Journal of Econometrics, Elsevier, vol. 241(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:55:y:2001:i:1:p:39-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.